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a b s t r a c t

It is a challenging task to recover a high quality image from the degraded images. This paper proposes a
fast image deblurring algorithm. To deal with the limitations of the proximal Newton splitting scheme, a
sparse framework is presented, which characterized by utilizing the sparse pattern of the approximated
inverse Hessian matrix and relaxing the original assumption on the constant penalty parameter.
The proposed framework provides a common update strategy by exploiting the second derivative
information. To alleviate the difficulties introduced by the sub-problem of this framework, an appro-
ximate solution to the weighted norm based primal–dual problem is derived and studied. Moreover,
its theoretical aspects are also investigated. Compared with the state-of-the-art methods in several
numerical experiments, the proposed algorithm demonstrates the performance improvement and
efficiency.

Crown Copyright & 2013 Published by Elsevier B.V. All rights reserved.

1. Introduction

Image restoration has been widely studied and discussed, first
explored in the 1960s [1,2]. This problem is a classical inverse
problem, which existed in various application domains, such as
astronomical image processing, medical image reconstruction and
microarray processing. In the past years, substantial amount of
material concerned on this subject. The main task of image restora-
tion is to recover the latent image under different distortion condi-
tions and noisy scenario. These problems varied in the prior models,
the regularization terms and the optimizationmethods. For simplify, a
classic imaging model is widely adopted, which consists of three
components, i.e. an observation image z, the latent image x and the
additive noise η. This model can be formulated as follows:

z¼ K⊗xþ η; ð1Þ

where K denotes the convolution operator or point spread function
(PSF) on the latent image x. More specifically, the operator is mainly
assumed to be spatially invariant, which can be viewed as an
approximate to the blurring process. And the noise, denoted by η,
varies in different conditions include Gaussian, salt & pepper noise,
and so on. Motivated by the specific properties of the imaging process
of the particular hardware [3,4], some researchers proposed some
efficient methods to restore a clear scene from a single image or

multi-frame images. Unlike the conventional methods, some other
schemes, such as the partial differential equation (PDE) with extreme
learning machine [36] and the neural network (NN)-like methods
[37,38], are presented to reconstruct the underlying image effectively.

In order to restore more edges or other obvious features of the
latent image and reduce the presented noise, Rudin-Osher and
Fatemi (ROF) [5] presented the total variation regularization term,
which can be exhibited as follows:

FðxÞ ¼ f ðxÞ þ gðxÞ ¼min
x

1
2
‖K⊗x�z‖2F þ λTVðxÞ; ð2Þ

where jj � ‖F is the Frobenius-norm, z denotes the degrade image; f(x)
stands for a convex function 1

2 ‖K⊗x�z‖2; g(x) stands for the
regularization term or non-convex functions λTVðxÞ; the parameter
λ is a scalar positive parameter, which controls the regularization
degree between the f(x) and g(x). This parameter can be automati-
cally selected by some methods or rules such as generalized cross-
validation (GCV), the discrepancy principle (DP), the L-curve [6] and
the generalized Stein unbiased risk estimator (GSURE) method [36].
It can be noted that F(x) is a non-smooth problem. The ROF's
regularization term has two forms, i.e. the isotropic TV and the
l1�based isotropic TV (see details in Appendix A). It is important to
note that the TV regularizer is non-smooth, which brings in some
difficulties, such as non-differentiability of the TV term, huge storage
requirement and heavy computation demand. To remedy these
issues, various schemes were proposed to deal with different aspects
of these issues. On the one hand, in order to overcome the drawbacks
of the original ROF's TV model, some researchers proposed some
improved total variation models include non-local and graph based
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total variation models [7]. On the other hand, some optimization
algorithms [6,8–10,29–31] were proposed to obtain a favorable
solution, such as projected gradient method [6], proximal gradient
method [8], a class of the Iterative Shrinkage/Thresholding Algo-
rithms (ISTA) [9,29] and the SpaRSA (Sparse reconstruction by
separable approximation) [10]. Among these methods, the families
of the IST-like algorithms were examined to be simply and efficient
minimization methods, which vary in the different strategies on the
step size and the iterate variable.

1.1. Related works

Recently, an implicit optimization approach [8,9,11,12], named the
proximal splitting or operator splitting scheme, is proved to be an
efficient scheme, which can be categorized as first-order method. Its
key procedure is to solve the sub-problem, i.e. the Moreau proximal
minimization problem [11]. There are intensive research literatures on
the proximal splitting scheme [14]. Among these works, the Forward–
Backward splitting method [8] and its variants are widely applied
include Backward–Backward algorithm [15], Beck–Teboulle proximal
optimization method [8], Dykstra-like splitting methods [16] and
Douglas–Rachford splitting method [17]. Some algorithms, extended
from the proximal splitting scheme, have been developed to handle
the real-world's problems directly, such as image restoration [8,9],
compressive magnetic resonance (MR) image reconstruction [12],
matrix completion [18] and machine learning [19,20]. Among the
above mentioned schemes, a class of accelerated proximal splitting
algorithms was developed [9]. In spite of these works, it can be noted
that there is significantly less work to focus on the regularization
parameter of the proximal term.

Another efficient way to handle this problem is the variable
splitting technology [21,22], which is mainly coupled with the
augmented Lagrangian optimization framework by converting the
original problem into an equivalent constraint optimization problem.
And this scheme has been applied to various application domains.
For image restoration problems, an effective scheme [13,21,22,32,33]
based on the classic alternating direction method of multipliers
(ADMM) framework was proposed. A combined variable splitting
and duality based image restoration method for the salt & pepper
noise removal was proposed in [23]. For the multiple variables
splitting case, Goldfarb [24] provided a novel solution. For the TV/l1
and TV/l2 minimization problems and its variants, Min Tao [32]
exploited the original structure of the problems and proposed some
effective algorithms. And this scheme also applied in some applica-
tion domains, such as compressed sensing (CS) [25] and video
restoration [33]. Although this scheme achieves a success in the
real-world's application, its convergence rate sometimes depends on
the choice or update of the penalty parameter.

1.2. The motivation and contribution

The motivation of this paper is to reduce the computational and
dimension limitations of the frameworks in [26,27]. It is well
known that the quasi-Newton-like methods suffer from the
computational requirement and memory usage for obtaining the
accurate representation of the true Hessian matrix as the dimen-
sion of the problem growing. In other words, when this framework
applies to the large-scale problem, some issues come out, for
instance the computation expense and the side effect of the
approximation of the exact Hessian matrix. These shortcomings
are a cue to develop an alternative approach in the hope that an
approximation to this optimization scheme, which is computa-
tionally cheap without destroying the convergence properties of
the original scheme. To handle these issues existed in the com-
putability and implementation, a modification of the previous

framework in [26,27] is proposed. As a result, an alternate
approach for solving the resulting sub-problem (18) is presented.

The difference to the works in [8,9,21,22], presented for solving the
sub-problem (18), can be summarized in three aspects. First, a
substantive assumption on the penalty parameter s in Eq. (7) is
relaxed into a general representation, i.e. an iterate-variation and
bound condition. The previous assumption is that the penalty para-
meter is chosen to be Lipschitz constant [8,9] or another constant μ in
[21,22], which need to be estimated at the algorithm's beginning. In
this paper, the proximal term is generalized by changing from
s
2 ∥x�y∥22 into 1

2 ∥x�y∥2~W . The penalty parameter s has an influence
on the convergence process toward the optimal solution [40]. The
proposed method can utilize the convergence behavior of the prox-
imal splitting scheme [21,22]. Although the relaxation of the main
assumption in [21,22] seems quite simple and natural, it will increase
the practical numerical computation performance of the proposed
method in term of the evaluation of the reconstruction performance
significantly. Second, a common strategy for obtaining the suitable
regularization matrix ~W is given. Specially, a modified iterate-update
penalty parameter method is provided. Compared to the works in
[26,27], the proposed approach just partly exploits the second-
derivative information, can be viewed as a balance between the
computational performance and the memory requirement. Finally, a
generalized framework, extended from the original proximal splitting
schemes, is provided. In summary, although the pattern of the
proposed algorithm and the methods in [21,22,26,27] is broadly
similar, the main difference is the consideration of sparse pattern
and the iterate-depend penalty or weighting matrix, which can deal
with the overhead costs introduced by the size limitation in [26,27].

In this paper, a fast image deblurring algorithm, utilizing the
sparse pattern of proximal Newton splitting framework, is proposed,
which can be considered as an extension of the works in [26,27]. For
resolving the weighted norms based Moreau proximal minimization
problem, a sparse gradient projection method is presented to resolve
the resulting sub-problem. Meanwhile, a modified symmetric rank 1
(SR1) approximation method is provided to determine the weighted
penalty matrix adaptively. The main advantage of the proposed
method is the introduction of the iteration-varying penalty or
weighting matrix, which can control the progress of the estimated
variable toward the optimal solution set dynamically. Specially, the
presented method maintains the sparse structure of the weighting
matrix and provides a unifying framework to the primary proximal
splitting scheme. In other words, our method can generate appro-
priate penalty parameter quickly. In some degree, the proposed
method can deal with a retrograde step toward feasibility. Another
advantage of the proposed method also provides a mechanism
for coping with the singularities when approximating the inverse
Hessian matrix. At last, the theoretical and practical results of the
proposed algorithm are presented. The extensive experiments
against the state-of-art methods indicate that the presented method
is more suitable for large scale optimization problems.

The paper is organized as follows. In Section 2, a briefly survey on
related optimization for algorithm comparison is presented. In Section
3, the proposed method and its some theoretical results are exhibited.
In Section 4, the numerical simulations and an extensive discussion
are presented. Finally, the work is concluded in Section 5.

2. The related optimization algorithms

2.1. The basic notations

In this section, some notations in this paper are defined.

� The symbol ‖x‖F denotes the Frobenius norm on the matrix
space x∈Rm�n, where m;n denote the size of matrix x.
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