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a b s t r a c t

Liquid state machine (LSM) is a recently developed computational model with a reservoir of recurrent
spiking neural network (RSNN). This model has shown to be beneficial for performing computational
tasks. In this paper, we present a novel type of LSM with self-organized RSNN instead of the traditional
RSNN with random structure. Here, the spike-timing-dependent plasticity (STDP) which has been
broadly observed in neurophysiological experiments is employed for the learning update of RSNN. Our
computational results show that this model can carry out a class of biologically relevant real-time
computational tasks with high accuracy. By evaluating the average mean squared error (MSE), we find
that LSM with STDP learning is able to lead to a better performance than LSM with random reservoir,
especially for the case of partial synaptic connections.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Liquid state machine (LSM) is a recently developed neural
network model that has gained increasing attention during the
past decade [1–3]. Proposed by Maass et al. [1], LSM is a new form
of computational model which is capable of conducting universal
computations [2,3]. This model has three main parts, an input
component (IC), a liquid component (LC), and a readout compo-
nent (RC) [1]. LC acts as a medium through which the input can be
expressed in a higher dimensional form called liquid state. For
different tasks, the liquid states can be transformed into different
forms through RC [4]. Typically, neural microcircuits are taken as
implementations of LC, which receives one or several input spike
trains and facilitate the projection of input into a higher dimen-
sional space. Instead of online updating all of the synaptic
conductivities in most of the traditional recurrent neural networks
(RNN), synaptic weights of recurrent connections in LC are usually
chosen randomly and fixed during the training process; while only
the weights from neurons in LC to neurons in RC are trained
by learning algorithm according to specific tasks [1,3]. This kind of

RNN design, including the Echo State Networks proposed by
Herbert Jaeger [5], is often referred as Reservoir Computing. Many
studies have shown that this kind of neural network model is
capable of performing various computational tasks with high
accuracy and low computational cost [1,3,5].

Since neural network is the essential part in the implementa-
tion of LC, synaptic connections or network structure is closely
related to the performance of the computational capability of LSM.
Considering the modeling of neural networks, various topologies
have been investigated, such as globally coupled networks [6],
small-world networks [7,8], and scale-free networks [9]. Contrast
to these predefined networks, self-organized neural networks
[10–13] are more reasonable to be considered. The self-organi-
zation is usually managed through spike-timing dependent plasti-
city (STDP), which is a form of long-term synaptic plasticity both
experimentally observed [14] and theoretically studied [15,16].
It has been broadly found in many neocortical layers and brain
regions [17–19]. In [20], bidirectional and unidirectional connec-
tions developed from STDP learning can reflect different neural
codes. Actually, the STDP explores the possible casual relationship
between each pair of pre- and post-synaptic neurons [21].

Recently, LSM with STDP learning has been studied. In [22],
STDP is used to train readout neurons so that a single neuron can
recognize the state of LC according to the input signal. Computa-
tional capability can also be improved by combining STDP and
Intrinsic Plasticity (IP) for reshaping of the network structure [23].
Besides, Hebbian Learning and STDP can be applied in LC to
improve the separation property when LSM is used to deal with
real-world speech data [24]. However, in these studies they did not
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consider the relationship between the intrinsic neural dynamics
and synaptic plasticity of neural network. Thus the updated net-
work with STDP learning rule is somewhat determined by initial
conditions, and cannot fully take advantage of the internal dyna-
mical states of neuronal population.

In papers [21,25] the authors proposed a novel neural network
with active-neuron-dominant structure, which is self-organized
via the STDP learning rule. In this model, strong connections are
mainly distributed to the outward links of a few highly active
neurons. Besides, a recent experimental study [26] found that
a small population of highly active neurons may dominate the
firing in neocortical networks, suggesting the existence of active-
neuron-dominant connectivity in the neocortex. Such synapse
distribution has shown to be beneficial for enhancing information
transmission of neural circuits [21,25].

Based on these previous studies, here we apply this novel active-
neuron-dominant structure presented in [25,21] to the neural
network of LC and investigate its computational capability. In this
model, neurons in LC are equally divided into four groups. Synaptic
connections in each group are active-neuron-dominant, which are
developed from the STDP rule before the training of readout
weights for computational tasks. The computational capability of
LSM with different settings of LC structure has been examined and
evaluated by applying the average MSE. Our results show that LSM
with STDP has a better performance than LSM with random LC for
these computational tasks, which indicates the significant influence
of STDP learning on the computational capability of LSM. In our
model, the internal dynamics of neurons with different degrees of
excitability are clearly extracted into an active-neuron-dominant
topology after the STDP process, which contributes to the synchro-
nous spiking behavior of LC network. It is the highly synchronous
network activity in LC that contributes to the improvement of the
computational performance of LSM system.

2. Network description

2.1. Network architecture

In our model, 400 Izhikevich neurons of LC are divided into
four independent groups equally (see Fig. 1). Before computations
of specific tasks, synapses between neurons in each group are
firstly updated by the STDP learning rule in order to obtain the
active-neuron-dominant network structure as described below. IC
includes four independent input streams, each consists of eight
spike trains generated by the Poisson process with randomly
varying rates riðtÞ; i¼ 1;…;4 (more details are given in Section 3).
Four input streams are connected to four groups in LC separately
(more connection types are discussed in Section 5). For each
specific computational task, there is a readout neuron which is
fully connected to all neurons in LC. With the same/fixed LC which
has the active-neuron-dominant structure updated by STDP, read-
out neurons could be trained to deal with different computational
tasks simultaneously. Note that during the computations, connec-
tions in LC always keep unchanged and only readouts are trained
by linear regression for different tasks.

2.2. Neuron model

In this paper, regular spiking neurons are modeled by the two-
variable integrate-and-fire (I&F) model of Izhikevich [27], which
has shown to be both biologically plausible and computationally
efficient. It is described by

_vi ¼ 0:04v2i þ 5vi þ 140�ui þ I þ Isyni

_ui ¼ aðbvi�uiÞ þ Dξi ð1Þ

if vi430 mV then
vi←c

ui←ui þ d

(
ð2Þ

where i¼ 1;2;…;N, vi represents the membrane potential and ui is
the membrane recovery variable. The parameters a; b; c; d are
dimensionless. The variable ξi is the independent Gaussian noise
with zero mean and intensity D that represents the noisy back-
ground. I stands for the externally applied current and Ii

syn is the
total synaptic current through neuron i and is governed by the
dynamics of the synaptic variable sj:

Isyni ¼� ∑
N

1ðj≠iÞ
gjisjðvi�vsynÞ

_sj ¼ αðvjÞð1�sjÞ�sj=τ

αðvjÞ ¼ α0=ð1þ e�vj=vshp Þ ð3Þ
here the synaptic recovery function αðvjÞ can be taken as the
Heaviside function. When the presynaptic cell is in the silent state
vjo0, sj can be reduced to _sj ¼�sj=τ; otherwise, sj jumps quickly
to 1 and acts on the post-synaptic cells. The synaptic conductance
gji from the jth neuron to the ith neuron will be updated through
the STDP learning rule. Here, the excitatory synaptic reversal
potential vsyn is set to be 0. The degree of neurons excitability is
governed by the parameter b [27]. Neurons with larger b are prone
to exhibit larger excitability and fire with a higher frequency than
others. In order to establish a heterogenous network, the para-
meter value bi of ith neuron is uniformly distributed in ½0:12;0:2�.

2.3. Self-organization of recurrent neural network

In our simulation synapses between mutually connected neu-
rons are updated by the STDP modification function F, which
selectively strengthens the pre-to-post synapses with relatively
shorter latencies or stronger mutual correlations, while
weakens the remaining synapses [10]. The synaptic conductance
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Fig. 1. Network structure. In this model, 400 Izhikevich neurons in LC are equally
divided into four groups where each group receives one input stream indepen-
dently. For each group, inputs in IC are fully or partially connected to neurons in LC.
When fully connected, inputs are fully applied to all of the neurons in the
corresponding LC group; when partially connected, inputs are partially applied to
5% selected randomly neurons from the population of each LC group. gil is the
synaptic weight. In LC, synaptic weights with the maximum value of gll in each
group are generated by updating the STDP learning rule. For RC, every readout
neuron is connected to all of the neurons in LC with synaptic weights gout, which
are trained by linear regression for different tasks.
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