
Regularized least squares fisher linear discriminant with applications
to image recognition

Xiaobo Chen a,b,n, Jian Yang b, Qirong Mao a, Fei Han a

a School of Computer Science and Telecommunication Engineering, Jiangsu University, Zhenjiang 212013, PR China
b School of Computer Science and Technology, Nanjing University of Science and Technology, Nanjing 210094, PR China

a r t i c l e i n f o

Article history:
Received 26 November 2012
Received in revised form
27 March 2013
Accepted 22 May 2013
Communicated by Ran He
Available online 3 June 2013

Keywords:
Linear discriminant analysis (LDA)
Regularization technique
Concave–convex programming (CCP)
2-Norm loss function

a b s t r a c t

Recursive concave-convex Fisher Linear Discriminant (RPFLD) is a novel efficient dimension reduction
method and has been successfully applied to image recognition. However, RPFLD suffers from singularity
problem and may lose some useful discriminant information when applied to high-dimensional data.
Moreover, RPFLD is computationally expensive because it has to solve a series of quadratic programming
(QP) problems to obtain optimal solution. In order to improve the generalization performance of RPFLD and
at the same time reduce its training burden, we propose a novel method termed as regularized least squares
Fisher linear discriminant (RLS-FLD) in this paper. The central idea is to introduce regularization into RPFLD
and simultaneously use the 2-norm loss function. In doing so, the objective function of RLS-FLD turns out to
be positive-definite, thus avoiding singularity problem. To solve RLS-FLD, the concave-convex programming
(CCP) algorithm is employed to convert the original nonconvex problem to a series of equality-constrained
convex QP problems. Each optimization problem in this series has a closed-form solution in its primal
formulation via classic Lagrangian method. The resulting RLS-FLD thus leads to much fast training speed and
does not need any optimization packages. Meanwhile, theoretical analysis is provided to uncover the
connections between RLS-FLD and regularized linear discriminant analysis (RLDA), thus giving more insight
into the principle of RLS-FLD. The effectiveness of the proposed RLS-FLD is demonstrated by experimental
results on some real-world handwritten digit, face and object recognition datasets.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

With the rapid accumulation of high-dimensional data in
numerous real-world applications such as face recognition, dimen-
sionality reduction (DR) plays a more and more important role and
attracts much attention during the last few decades. The key
assumption of DR is that many classes of data, such as face images,
possibly lie on or close to a subspace or manifold of much lower
dimension than that of their ambient space. Performing DR by
linearly combining the original features is of particular interest
because it is simple to calculate and analysis. Two representative
DR methods are principal component analysis (PCA) [1] and linear
discriminant analysis (LDA) [2,3] which have been extensively
applied to face recognition [4–6] and other pattern recognition
problems.

PCA seeks a set of mutually orthogonal basis vectors to
represent the original data in a least squares sense. In fact, these
basis vectors are exactly the eigenvectors associated with the
largest eigenvalues of the covariance matrix of all the sample
points. However, PCA is an unsupervised DR method because it

does not take into account of the label information in the learning
steps. As a result, the vectors found by PCA may be insufficient for
pattern classification task. Unlike PCA, LDA searches the discrimi-
nant vectors that make the samples from the different classes far
away from each other while keeping the samples from the same
class to be closer to each other. The optimal discriminant vectors
are obtained by maximizing the ratio of between-class scatter to
within-class scatter. Recent studies have shown that LDA achieves
better classification performance than PCA in many cases [5,7].

A major problem in LDA is known as singularity problem or
small sample size (SSS) problem. Specifically, when the number of
samples is small compared with the size of features, the within-
class scatter matrix Sw in LDA is singular. To handle this problem,
a simple yet effective strategy is based on regularization notion
[8–10]. It adds a small perturbation to the diagonal elements of Sw
so that it becomes nonsingular. Regularized LDA (RLDA) thus
stabilizes the estimation of Sw and improves the performance of
LDA. Another option to handle singularity problem is based on
subspace analysis [5,11]. The resulting method is coined as Fish-
erfaces, in which PCA is first used as a pre-processing step to make
Sw nonsingular before the application of LDA. Another problem of
LDA is that it may fail to find a good discriminant vector for multi-
class data especially when the classes distribute unevenly in
original feature space [12]. This is because LDA tries to maximize
the average distances among different classes. To deal with this
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so-called class separation problem, a heuristic method called aPAC
(approximate Pairwise Accuracy Criterion) [13] is developed that
assigns larger weights for similar classes in estimating between-
class scatter. Another kind of recently emerging method tries to
find discriminant features by maximizing the minimal distance among
classes [14,15]. Local Fisher Discriminant Analysis (LFDA) [29], how-
ever, modifies the definition of within-class scatter and between-class
scatter matrices of LDA, thus showing usefulness when samples in a
class are multimodal.

Recently, some research works [16–18] have shown that casting
an eigenvalue based method as a related SVM-type problem [19]
can significantly improve the performance. Following this line,
a novel discriminant analysis algorithm called recursive concave-
convex Fisher linear discriminant (RPFLD) [16] is developed by
converting the eigenvalue problem in LDA to a related SVM-type
optimization problem which can be solved by quadratic program-
ming (QP) iteratively. Although RPFLD empirically shows good
discriminant performance compared with the original LDA, it still
suffers from some drawbacks as described in the next section.
In this paper, in order to enhance the performance of RPFLD and at
the same time accelerate its training speed, we develop a novel DR
method termed as regularized least squares Fisher linear discrimi-
nant (RLS-FLD). Specifically, to simplify the formulation of RPFLD,
we replace the 1-norm loss function in RPFLD with the 2-norm loss
function, borrowing the same idea as in LSSVM related literatures
[20–23]. Meanwhile, taking into account that RPFLD only mini-
mizes the empirical risk, we introduce regularization on the
discriminant vectors so as to implement structural risk minimiza-
tion [19]. Furthermore, aiming to generate more discriminant
vectors, we directly impose orthogonal constraints on discriminant
vectors. In such a way, we finally obtain an equality-constrained
nonconvex optimization problem. To solve the resulting optimiza-
tion problem, an iterative algorithm is developed based on both
concave-convex procedure (CCP) [24] and classic Lagrangian multi-
plier method [25]. In what follows, we summarize some advan-
tages of RLS-FLD compared with the original RPFLD.

(i) Due to regularization, RLS-FLD can reduce model complexity
and is expected to produce better generalization ability.
Interestingly, it overcomes the singularity problem in RPFLD
at the same time.

(ii) Rather than solving QP problems, RLS-FLD boils down to
solving a system of linear equations iteratively. Therefore,
RLS-FLD does not require any specialized optimization pack-
age and produces much faster training speed.

(iii) The relation between RLS-FLD and regularized LDA is revealed
based on the power method for eigenequations, thus giving
a deep insight into the principle of RLS-FLD.

The rest of this paper is organized as follows. In Section 2, we
briefly review LDA and the recently proposed RPFLD algorithm. Then,
we present the formulation of RLS-FLD, develop an effective algo-
rithm, and discuss its relation to RLDA in Section 3. Subsequently, we
report the experimental results on some publicly available databases
in Section 4. Finally, we conclude this paper in Section 5.

2. Brief reviews of LDA and RPFLD

2.1. Linear discriminant analysis (LDA)

Suppose ω1;ω2;…;ωK are K known pattern classes in D-dimen-
sional input space. The number of samples in class ωi is Li
ði¼ 1;2;…;KÞ and let L¼∑K

i ¼ 1Li be the total number of samples.
Let X ¼ ½x1; x2;…; xL� where xi is a D-dimensional sample and
yi∈fω1;ω2;…;ωK g be the associated class labels. The mean vectors

for each class and for all of the classes can be defined as

mi ¼
1
Li

∑
yj ¼ ωi

xj andm¼ 1
L

∑
L

j ¼ 1
xj ð1Þ

Then, the within-class scatter matrix Sw, between-class scatter
matrix Sb and total scatter matrix St are defined, respectively, by
the following formula

Sw ¼ ∑
K

i ¼ 1
∑
Li

yj ¼ ωi

ðxj−miÞðxj−miÞT ð2Þ

Sb ¼ ∑
K

i ¼ 1
Liðmi−mÞðmi−mÞT

¼ 1
2L ∑

K

i;j ¼ 1
LiLjðmi−mjÞðmi−mjÞT ð3Þ

St ¼ Sw þ Sb ¼ ∑
L

j ¼ 1
ðxj−mÞðxj−mÞT ð4Þ

Note that two equivalent expressions for Sb are given in (3).
According to the Fisher's criterion, LDA tries to find a discriminant
vector such that the ratio of between-class scatter to within-class
scatter is maximized after the projection of samples. Therefore,
LDA seeks the optimal discriminant vector w by maximizing

JðwÞ ¼ wTSbw
wTSww

ð5Þ

The objective function of (5) is known as Rayleigh quotient.
Thus, when Sw is of full rank, the set of optimal discriminant
vectors can be calculated by performing an eigenvalue decom-
position of S−1w Sb and taking the discriminant vectors to equal the
eigenvectors corresponding to the d largest eigenvalues. However,
when Sw is singular, an extra regularization term λI can be added
to Sw which allows Sw þ λI to be positive-definite, where λ is
a small positive number and I is an identity matrix of appropriate
dimensions. This method is called regularized LDA (RLDA) that has
been proved to produce better performance than the original LDA.

2.2. Recursive concave–convex fisher discriminant analysis

RPFLD incorporates the notion of SVM [18,26] into the
formulation of LDA by constraining the distance between mean
vector of class i and total mean vector to be at least one. Subjecting
to these constraints, RPFLD minimizes within-class scatter at the
same time. To this end, RPFLD can be formulated as the following
constrained minimization problem

min
w;ξi

1
2w

TSww þ C∑
i
ξi

s:t:jwTmi−wTmj≥1−ξi; ξi≥0; i¼ 1;2;…;K ð6Þ
where the parameter C controls the trade-off between the within-
class compactness and between-class separability whileas ξis ði¼
1;2;…;KÞ are nonnegative slack variables for relaxing the constraints.

Some properties of RPFLD should be pointed out as follows.
First, to handle the nonconvexity of constraint jwTmi−wTmj≥1−ξi,
RPFLD follows the idea of Concave–Convex Procedure [24] and
converts those constraints to linear ones by replacing jwTmi−wTmj
with its first-order Taylor expansion at current approximate
solution. In other words, we can solve (6) approximately by
solving a series of convex QP problems. Therefore, computing
the solution for RPFLD is very time consuming and requires
elaborated optimization toolbox. Second, when the number of
features is much larger than that of samples, the SSS problem
occurs and within-class matrix Sw tends to be singular or
ill-conditioned. In such a case, RPFLD applies PCA on the raw data
to reduce dimension such that Sw is invertible. Although it does
overcome SSS problem, this method may discard some useful
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