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a b s t r a c t

In this work, a novel salient point descriptor for 3D point clouds, called Covariance Matrix Pyramids
(CMPs), is presented. With CMPs it is possible to compare unstructured and unequal numbers of points
which is an important characteristic when working with point clouds. Corresponding points from
different scans are matched in a pyramidal approach combined with Particle Swarm Optimization. The
flexibility of CMPs is demonstrated on the basis of several databases with objects, such as 3D faces, 3D
apples, 3D kitchen scenes, 3D human–machine interaction gesture sequences, and 3D buildings all
recorded with different 3D sensors. Quantitative results are given and compared with other state-of-the-
art descriptors, whereby CMPs show promising performance.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Motivation

In the computer vision domain conventional cameras which
output one channel (gray) images or three channel (color) images
are increasingly supplemented by information from novel sensors
[1,2]. Especially 3D sensors are important to gather necessary
information about the environment for all kinds of human–
machine interaction applications. Examples for such sensors
include the PointGrey Bumblebee XB3, the Velodyne LIDAR used
in the DARPA Urban Challenge, the Siemens Structured-Light 3D
Scanner, or Microsoft's Kinect sensor. The output of these devices
is not conveniently structured as image but as 3D point cloud. The
huge success of the NVidia/Google supported Point Cloud Library
[3] and Microsoft's Kinect can be seen as indicator that in the near
future point clouds will play an important role in the computer
vision field and probably even replace conventional images for
many applications. However, almost all salient point descriptors
rely on dense gray or color images, and only little work has been
done on matching points in point clouds. Therefore, we felt the
need to present a new point descriptor that is able to cope with 3D
point clouds. A possible application for such a descriptor would be

automatic labeling of a database. The user could select salient
points in, for example, one reference face and the other faces in a
database are then automatically labeled.

1.2. Related work

There exists a considerable number of salient point descriptors.
Among the most prominent ones are KLT [4], SIFT [5], PCA-SIFT [6],
and SURF [7]. In [8], a comparison among state-of-the-art point
descriptors is given, in which the SIFT descriptor performs best.
Also for tracking, accurate optical flow methods exist, such as
[9–12]. The SURF descriptor has been further refined in [13], where
the FAIR-SURF descriptor has been proposed. In [14], the authors
present a scale invariant method for image matching which
applies weighted voting on a 3D affinity matrix.

Covariance matrices have been used in [15,16], where both
approaches are applied to conventional images. In [17], the
authors propose a similar approach, called Sigma Set, which is
computationally less demanding. In [18], Pang et al. applied Gabor-
based covariance matrices for face recognition. This approach has
been further refined in [19], where the Kernel Gabor Region
Covariance Matrix has been presented and also applied for face
recognition tasks. In [20], the authors explore smart possibilities to
extract features from co-occurrence histograms of oriented gra-
dients (CoHOGs) for person detection. However, all these methods
rely on conventional images. Thus, they are not suited for 3D point
clouds. In [21], the authors propose an interesting approach where
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SIFT features are adapted for 2.5D range data with image structure
and without texture.

There have also been contributions with methods that work
directly with point clouds. Frome et al. presented 3D shape contexts
and harmonic shape contexts to classify whole shapes without using
texture [22]. In [23], the authors introduced a technique for the
registration of 3D point clouds and Brostow et al. presented a work
on semantic segmentation based on 3D point clouds in [24]. Another
promising approach is spin images [25]. Note that the point matching
strategy is brute force. Furthermore, spin-images are quite restrictive,
i.e., they are designed to match points from exactly the same object,
while matching, for example, facial feature points of two different
individuals might fail. Rusu et al. [26] presented the Persistent Point
Feature Histograms (PFH) for 3D point clouds that are also already
available in Willow Garage's Point Cloud Library [3].

1.3. Overview

In this work, covariance matrix pyramids (CMPs), that have
been presented in [16], are used for point clouds. Since images and
point clouds are structurally different, the method substantially
changed in order to work for point clouds. The result is a new,
highly flexible salient point descriptor that works directly on 3D
point clouds. The method is summarized as follows:

� A list of potential features for the description of the salient
point's neighborhood is presented. With a training set, ade-
quate features are selected via Sequential Forward Selection
(SFS) with discrete weights (Section 2).

� Features are summarized by a covariance matrix. Employing a
covariance matrix as salient point descriptor is practical for
matching salient points. In contrast to many previously proposed
descriptors (SIFT, SURF, local optical flow, etc.), it provides a
convenient way to fuse conventional features (red, green, blue)
with non-conventional features (depth, infrared, etc.). Spatial
distribution is captured by the covariance between x, y, or z-
coordinates of the points and their other features. Furthermore,
covariance matrices are, to a certain extent, robust against noise
and illumination offset, because both are filtered out by an
average filter during covariance computation (Section 3).

� Corresponding points from different scans are matched. To
allow for larger displacements covariance matrices are used in
pyramids, motivating the name covariance matrix pyramid.
Particle Swarm Optimization (PSO) is employed to find the
best match at each pyramid level (Section 4).

Five application scenarios are given in Section 5. In the first two
experiments, salient points in 3D faces are matched. Two publicly
available databases with handlabeled landmarks have been
employed. With these landmarks as ground truth quantitative
results can be given and it can also be shown that PSO reduces
computation time while not affecting matching accuracy.

Further, salient points in 3D apples, gesture sequences, kitchen
scenes, and buildings are matched. The matching accuracy is
compared to another point descriptor for 3D point clouds and
two other point descriptors that rely on 2D images. All experi-
ments demonstrate promising performance of CMPs. In Section 6,
the work is concluded and future scope is outlined.

2. Adequate features

2.1. Output from sensors

We assume that sensors output an unstructured 3D point cloud.
Examples for these sensors include the PointGrey Bumblebee XB3,

the Velodyne LIDAR used in the DARPAUrban Challenge, the Siemens
Structured-Light 3D Scanner, Inspeck Mega Capturor II 3D, Di3D
Dynamic Imaging System, or Microsoft's Kinect sensor. Each point
has spatial attributes ðx; y; zÞ and color attributes ðr; g; bÞ. If one of the
points is selected as salient point, information about this point and
its neighborhood must be extracted for its representation. For this
purpose, features are extracted, as explained in the next section.

2.2. Feature extraction

For a salient point a set of features is computed. We propose a
list of potential features (depicted in Fig. 2 for a face of the
Bosphorus database [27]) of which the best features can be
selected automatically if a training set is available. Spatial informa-
tion ðx; y; zÞ can be directly taken. Hue H, saturation S, and value V
are computed from each point's rgb-values.

The surface normal ni for point i, which is depicted in Fig. 1, is
computed as follows. The point cloud is triangulated with Delau-
nay triangulation. The surface normal nt at the triangle centroid is
computed. For the triangle t ðp1;p2;p3Þ the surface normal is

nt ¼
nx

ny

nz

0
B@

1
CA¼ ðp2−p1Þ � ðp3−p1Þ: ð1Þ

The surface normal ni of point i is then the average of all surface
normals of the triangles of which point i is a vertex:

ni ¼
1

∑tωt
∑
t
ωt � nt ; ð2Þ

where ωt is a weight that depends on the distance between the
centroid of triangle t and point i and ∑tωt ¼ 1.

There is no straightforward way to compute the intensity
gradient for point clouds, as for conventional images, so an
alternative measure is considered. The intensity normals gi are
computed similar to the surface normal, except that the third
component of the triangle point is the intensity instead of z:
pj ¼ ðxj; yj; IjÞT .

A further feature is the intensity entropy. To compute the
entropy, all points in the neighborhood of point i are taken. We
set the neighborhood size to 2% of the object height. A histogram
of the intensity values of all points in the neighborhood is created.
With this histogram a numerical probability pg can be assigned to
each gray value g∈ð0;255Þ. The intensity entropy is then

HðIÞ ¼ ∑
255

g ¼ 0
pg � log pg : ð3Þ

We also perform several operations on these features that are
inspired by a mean filter, a mean of absolute values filter, and a
Laplace filter for conventional images. These three operations are
applied to all three components of the surface normal ðnx;ny;nzÞ

Fig. 1. The surface normal ni of point i is the average of the surface normals of
adjacent triangles.
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