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a b s t r a c t

As a powerful model to represent the data, graph has been widely applied to many machine learning
tasks. More notably, to address the problems associated with the traditional graph construction methods,
sparse representation has been successfully used for graph construction, and one typical work is L1-
graph. However, since L1-graph often establishes only part of all the valuable connections between
different data points due to its tendency to ignore the intrinsic structure hidden among the data, it fails
to exploit such important information for the subsequent machine learning. Besides, the high
computational costs of L1-graph prevent it from being applied to large scale high-dimensional datasets.
In this paper, we construct a new graph, called the k-nearest neighbor (k-NN) fused Lasso graph, which is
different from the traditional L1-graph because of its successful incorporation of the structured sparsity
into the graph construction process and its applicability to large complex datasets. More concretely, to
induce the structured sparsity, a novel regularization term is defined and reformulated into a matrix
form to fit in the sparse representation step of L1-graph construction, and the k-NN method and kernel
method are employed to deal with large complex datasets. Experimental results on several complex
image datasets demonstrate the promising performance of our k-NN fused Lasso graph and also its
advantage over the traditional L1-graph in the task of spectral clustering.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Since graph is a powerful model to represent the data, it has
served as foundation for lots of machine learning problems, such
as spectral clustering [1,2], semi-supervised learning [3,4], dimen-
sion reduction [5] and so on. Although many graph-based methods
have been developed for different machine learning tasks, graph
construction still receives relatively little attention as pointed out
in [6,7]. In the literature, there exist two commonly used strategies
for graph construction, namely k-nearest neighbor (k-NN) and
ϵ�ball methods. Although these methods are easy both to under-
stand and to implement, they suffer from inherent limitations, e.g.
data dependency and sensitivity to noise.

Recently, to address these problems, sparse representation [8]
has been successfully used for graph construction, among which
one typical work is L1-graph [9,10]. The success of L1-graph lies in
the sparse representation step, in which it seeks a sparse linear
reconstruction of each data point with the other data points by
exploiting the sparse property of the Lasso penalty [11]. This is, in
fact, a new way that is fundamentally different from the tradi-
tional ones (like Euclidean distance, cosine distance, etc.) to
measure the similarity between different data points. By inducing
sparsity in the linear reconstruction process, it identifies the most

relevant data points as well as their estimated similarity to the
reconstructed data point, and by doing so gets a graph that proves
effective in the subsequent graph-based machine learning tasks.

However, two interesting comments from previous works on
the Lasso method and the L1-graph attract our attention:

(1) As reported in [12], when faced with a group of highly correlated
variables, Lasso method tends to randomly choose one of them.

(2) In [10], the authors stated that “for certain extreme cases, e.g. if
we simply duplicate each sample and generate another new
dataset of double size, L1-graph may only connect these
duplicated pairs”.

With some simple mathematical derivations, as shown in Section 2,
we can see the similarity between the sparse representation step of
L1-graph construction and the Lasso method. As a result, if we think
of the data points and the similarity between data points in sparse
representation step as variables and correlation between variables in
Lasso method respectively, the first comment indeed suggests that
the sparse representation does not connect all the data points that
need to be connected. In the situation mentioned in the second
comment, the similarity between the reconstructed data point and
its duplicate (measured by the sparse representation method of
L1-graph) dominates others, which also makes the sparse represen-
tation step ignore many other valuable connections.

In addition, advances in technology have made large scale
high-dimensional datasets common in many scientific disciplines,
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yet the construction process of L1-graph, in which the computa-
tional costs become unbearable because of a huge matrix (details
will be given in Section 2) constructed when dealing with these
datasets, prevents it from being further applied to problems
related to such large complex datasets.

Our work mainly aims to overcome these shortcomings of
L1-graph. To avoid L1-graph's failure to establish all valuable connec-
tions between different data points, we seek to incorporate structured
sparsity into the L1-graph construction process. The main idea is to
exploit the local structure across the dataset by making the recon-
struction coefficients of every data point and its nearest neighbors also
close to each other in value in the linear reconstruction process of the
sparse representation step. To achieve this, we propose a novel
regularization term, which makes use of the information provided
by traditional ways of measuring similarity between data points, for
the sparse representation step of L1-graph construction to induce
structured sparsity and reformulate it in matrix form to fit in our new
graph (which we call k-NN fused Lasso graph) construction process.
And in order to deal with large scale high-dimensional datasets, we
employ the k-NN method and kernel method in our new graph
construction process. To be more specific, we reconstruct each data
point and construct the corresponding new regularization term, both
with only its k nearest neighbors to handle large scale datasets. And
when solving the linear reconstruction problem, we use the kernel
matrix instead of the original data vectors to handle high-dimensional
datasets. The effectiveness of k-NN fused Lasso graph is verified by the
experimental results on several large complex image datasets in the
task of spectral clustering. Specifically, to gain a first impression of its
effectiveness, the similarity (i.e. weight) matrix of our new graph on
the doubled soybean dataset (the soybean dataset, which contains 47
35-dimensional instances, can be downloaded from the UCI Machine
Learning Repository [20], and the doubled soybean dataset is gener-
ated by making an exact duplicate of each data point in the original
dataset) are illustrated on Fig. 1(b). Comparing it with Fig. 1(a), we
can easily see the tremendous advantage of our new graph over the
L1-graph.

Our main contribution is the development of the new k-NN
fused Lasso graph construction method. To be more specific, our
contributions can be summarized as follows:

(1) We proposed a novel regularization term to induce structured
sparsity.

(2) We designed a reformulation strategy to incorporate the new
regularization term into the graph construction process.

(3) We successfully employed the k-NN method and kernel
method to make our graph construction method applicable
to large scale high-dimensional datasets.

The idea of linearly reconstructing a given data point by its
neighbors is also used in some other works, e.g. the locally linear
embedding [22] method for dimension reduction. However, unlike
our method, these works did not pay much attention to the
reconstruction process itself. In [23], the authors proposed a
unifying framework for dimension reduction called patch align-
ment. In our graph construction process, by using the k-NN
method, we also construct a patch for each data point, and
conducting the sparse representation step is similar to the part
optimization in [23]. By unlike [23], we do not have a whole
alignment step. We run the sparse representation step for each of
the patches, and unifying them in the end to get the similarity
matrix by symmetrizing the original similarity matrix constructed
by the sparse representation steps. The idea of exploring the
dataset structure in a pairwise manner is also present in some
previous works, e.g. the max-min distance analysis [24]. But in
[24], the authors used the pairwise distance between different
classes, while our method focuses on the pairwise distance of the
reconstruction coefficients of different data points. Also, our
method is unsupervised in nature. We do not need such prior
information as class labels, which makes our method applicable to
many unsupervised or semi-supervised problems, and distin-
guishes our work from previous works like [24,14], as well as
some other works, like the Group Sparse MahNMF in [25]. Like the
elastic net [12], our new regularization term also has certain
grouping effect. But we promote such grouping effect in a pairwise
manner with the L1 norm, which makes our method performs
differently from the elastic net [12] as well as some other elastic
net based works, such as Elastic Net Inducing MahNMF [25] and
Manifold Elastic Net [26]. To the best of our knowledge, we have
made the first attempt to incorporate the structured sparsity into
the L1-graph construction process, and the fact that our new k-NN
fused Lasso graph outperforms the traditional k-NN graph and
L1-graph (see later experimental results in Section 6) when
applied to spectral clustering on large complex image datasets
demonstrates the great value of the structured sparsity informa-
tion we utilize in our new method.

The rest of the paper will be organized as follows. In Section 2,
we briefly review the L1-graph construction method. In Section 3,
we describe in detail how we overcome the shortcomings of

Fig. 1. Comparison between the similarity (i.e. weight) matrices of the L1-graph and our k-NN fused Lasso graph on the doubled soybean dataset. For illustration purpose, the
first and second half of the new dataset are identical copies of the original dataset, and each copy of the original dataset is rearranged such that data points within a class
appear consecutively. More notably, the darker is a pixel, the larger is the similarity. (a) L1-graph and (b) our graph.
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