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We present in this paper a variation of the self-organising map algorithm where the original time-

dependent (learning rate and neighbourhood) learning function is replaced by a time-invariant one.

This allows for on-line and continuous learning on both static and dynamic data distributions. One of

the property of the newly proposed algorithm is that it does not fit the magnification law and the

achieved vector density is not directly proportional to the density of the distribution as found in most

vector quantisation algorithms. From a biological point of view, this algorithm sheds light on cortical

plasticity seen as a dynamic and tight coupling between the environment and the model.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

Vector quantisation (VQ) refers to the modelling of a prob-
ability density function into a discrete set of prototype vectors
(sometimes called the codebook) such that any point drawn from
the associated distribution can be associated to a prototype
vector. Most VQ algorithms try to match the density through
the density of their codebook: high density regions of the
distribution tend to have more associated prototypes than low
density region. This generally allows to minimise the loss of
information (or distortion) as measured by the mean quadratic
error. For a complete picture, it is to be noted that there also
exists some cases where only a partition of the space occupied by
the data (regardless of their density) is necessary. In this case, one
wants to achieve a regular quantification a priori of the prob-
ability density function. For example, in some classification
problems, one wants to achieve a discrimination of data in terms
of classes and thus needs only to draw frontiers between data
regardless of their respective density.

Vector quantisation can be achieved using several methods
such as variations of the k-means method [1], Linde–Buzo–Gray
(LBG) algorithm [2] or neural network models such as the self-
organising map (SOM) [3], neural gas (NG) [4] and growing neural
gas (GNG) [5]. Among all these methods, the SOM algorithm is
certainly the most famous in the field of computational neuros-
ciences since it can give a biologically and plausible account on
the organisation of receptive fields in sensory areas where
adjacent neurons share similar representations. The stability
and quality of such self-organisation depend heavily on a

decreasing learning rate as well as on a decreasing neighbourhood
function. This is quite congruent with the idea of a critical period
in the early years of development where most sensory or motor
properties are acquired and stabilised [6–8]. However, this fails to
explain cortical plasticity since we know that the cortex has the
capacity to re-organise itself in face of lesions or deficits [9–11].
The question is then to know to what extent it is possible to have
both stable and dynamic representations?

Quite obviously, this cannot be achieved using SOM-like
algorithms that depend on a time decreasing learning rate and/
or neighbourhood function (SOM,NG,GNG) and, despite the huge
amount of literature [12,13] around self-organising maps and
Kohonen-typed networks (more than 7000 works listed in [14]),
there is surprisingly and comparatively very little work dealing
with online learning (also referred as incremental or lifelong
learning). Furthermore, most of these works are based on incre-
mental models, that is, networks that create and/or delete nodes
as necessary. For example, the modified GNG model [15] is able to
follow non-stationary distributions by creating nodes like in a
regular GNG and deleting them when they have a too small
utility parameter. Similarly, the evolving self-organising map
(ESOM) [16,17] is based on an incremental network quite similar
to GNG that creates dynamically based on the measure of the
distance of the winner to the data (but the new node is created at
exact data point instead of the mid-point as in GNG). Self-
organising incremental neural network (SOINN) [18] and its
enhanced version (ESOINN) [19] are also based on an incremental
structure where the first version is using a two layers network
while the enhanced version proposed a single layer network. One
noticeable result is the model proposed by [20] which does not
rely on an incremental structure but is based on the Butterworth
decay scheme that does not decay parameters to zero. The model
works in two phases, an initial phase (approximately 10 epochs)
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is used to establish a rough global topology thanks to a very large
neighbourhood and the second phase uses a small neighbourhood
phase to train the network. Unfortunately, the size of the
neighbourhood in the second phase has to be adapted to the
expected density of the data.

Without judging performances of these models, we do not
think they give a satisfactory answer to our initial question and
we propose instead to answer by considering a tight coupling
between the environment and representations. If the environ-
ment is stable, representations should remain stable and if the
environment suddenly changes, representations must dynami-
cally adapt themselves and stabilise again onto the new environ-
ment. We thus modified the original SOM algorithm in order to
make its learning rule and neighbourhood independent of time.
This results in a tight coupling between the environment and
the model that ensure both stability and plasticity. In the next
section, we formally describe the dynamic self-organising map in
the context of vector quantisation and both neural gas and self-
organising map are formally described in order to underline
differences between the three algorithms. The next section re-
introduces the model from a more behavioural point of view and
main experimental results are introduced using either low or high
dimensional data and offers side-to-side comparison with other
algorithms. Results concerning dynamic distributions are also
introduced in the case of dynamic self-organising map in order
to illustrate the coupling between the distribution and the model.
Finally, we discuss the relevancy of such a model in the context of
computational neurosciences and embodied cognition.

2. Definitions

Let us consider a probability density function f(x) on a compact

manifold OARd. A vector quantisation (VQ) is a function F from

O to a finite subset of n code words fwiARd
g1r irn that form the

codebook. A cluster is defined as Ci ¼
def
fxAOjFðxÞ ¼wig, which

forms a partition of O and the distortion of the VQ is measured
by the mean quadratic error

x¼
Xn

i ¼ 1

Z
Ci

Jx�wiJ
2f ðxÞ dx: ð2:1Þ

If the function f is unknown and a finite set fxig of p non-biased
observations is available, the distortion error may be empirically
estimated by

x̂ ¼
1

p

Xn

i ¼ 1

X
xj ACi

Jxj�wiJ
2: ð2:2Þ

Neural maps define a special type of vector quantifiers whose
most common approaches are the self-organising map (SOM) [3],
elastic net (EN) [21], neural gas (NG) [4] and growing neural gas
(GNG) [22]. In the following, we will use definitions and notations
introduced by [23] where a neural map is defined as the projec-

tion from a manifold O�Rd onto a set N of n neurons which is

formally written as F : O-N . Each neuron i is associated with a

code word wiARd, all of which established the set fwigiAN that is

referred as the codebook. The mapping from O to N is a closest-
neighbour winner-take-all rule such that any vector vAO is
mapped to a neuron i with the code wv being closest to the
actual presented stimulus vector v,

F : v/arg min
iAN

ðJv�wiJÞ: ð2:3Þ

The neuron wv is called the winning element and the set
Ci ¼ fxAOjFðxÞ ¼wig is called the receptive field of the neuron i.

The geometry corresponds to a Vorono diagram of the space with
wi as the centre.

2.1. Self-organising maps (SOM)

SOM is a neural map equipped with a structure (usually a
hypercube or hexagonal lattice) and each element i is assigned a
fixed position pi in Rq where q is the dimension of the lattice
(usually 1 or 2). The learning process is an iterative process
between time t¼0 and time t¼ tf ANþ where vectors vAO are
sequentially presented to the map with respect to the probability
density function f. For each presented vector v at time t, a winner
sAN is determined according to Eq. (2.3). All codes wi from the
codebook are shifted towards v according to

Dwi ¼ eðtÞhsðt,i,sÞðv�wiÞ ð2:4Þ

with hsðt,i,jÞ being a neighbourhood function of the form

hsðt,i,jÞ ¼ e�Jpi�pjJ
2=2sðtÞ2 ð2:5Þ

where eðtÞAR is the learning rate and sðtÞAR is the width of the
neighbourhood defined as

sðtÞ ¼ si

sf

si

� �t=tf

with eðtÞ ¼ ei

ef

ei

� �t=tf

, ð2:6Þ

while si and sf are respectively the initial and final neighbour-
hood width and ei and ef are respectively the initial and final
learning rate. We usually have sf 5si and ef 5ei.

2.2. Neural gas (NG)

In the case of NG, the learning process is an iterative process
between time t¼0 and time t¼ tf ANþ where vectors vAO are
sequentially presented to the map with respect to the probability
density function f. For each presented vector v at time t, neurons
are ordered according to their respective distance to v (closest
distances map to lower ranks) and assigned a rank kiðvÞ. All codes
wi from the codebook are shifted towards v according to

Dwi ¼ eðtÞhlðt,i,vÞðv�wiÞ ð2:7Þ

with hlðt,i,vÞ being a neighbourhood function of the form:

hlðt,i,vÞ ¼ e�kiðvÞ=lðtÞ ð2:8Þ

where eðtÞAR is the learning rate and lðtÞAR is the width of the
neighbourhood defined as

lðtÞ ¼ li

lf

li

� �t=tf

with eðtÞ ¼ ei

ef

ei

� �t=tf

, ð2:9Þ

while li and lf are respectively the initial and final neighbour-
hood and ei and ef are respectively the initial and final learning
rate. We usually have lf 5li and ef 5ei.

2.3. Dynamic self-organising map (DSOM)

DSOM is a neural map equipped with a structure (a hypercube
or hexagonal lattice) and each neuron i is assigned a fixed position
pi in Rq where q is the dimension of the lattice (usually 1 or 2).
The learning process is an iterative process where vectors vAO
are sequentially presented to the map with respect to the
probability density function f. For each presented vector v, a
winner sAN is determined according to Eq. (2.3). All codes wi

from the codebook W are shifted towards v according to

Dwi ¼ eJv�wiJOhZði,s,vÞðv�wiÞ ð2:10Þ
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