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a b s t r a c t

For many applications such as compliant, accurate robot tracking control, dynamics models learned

from data can help to achieve both compliant control performance as well as high tracking quality.

Online learning of these dynamics models allows the robot controller to adapt itself to changes in the

dynamics (e.g., due to time-variant nonlinearities or unforeseen loads). However, online learning in

real-time applications – as required in control – cannot be realized by straightforward usage of off-the-

shelf machine learning methods such as Gaussian process regression or support vector regression. In

this paper, we propose a framework for online, incremental sparsification with a fixed budget designed

for fast real-time model learning. The proposed approach employs a sparsification method based on an

independence measure. In combination with an incremental learning approach such as incremental

Gaussian process regression, we obtain a model approximation method which is applicable in real-time

online learning. It exhibits competitive learning accuracy when compared with standard regression

techniques. Implementation on a real Barrett WAM robot demonstrates the applicability of the

approach in real-time online model learning for real world systems.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, model learning has become an important tool
in a variety of robotics applications such as terrain modeling [5],
sensor evaluation [11], model-based control [8,13] and many
others. The reason for this rising interest is that accurate analy-
tical models are often hard to obtain due to the increasing
complexity of modern robot systems. Model learning can be a
useful alternative as the model is estimated directly from mea-
sured data. Unknown nonlinearities are directly taken into
account, while they are neglected either by the standard phy-
sics-based modeling techniques or approximated by hand-crafted
models. Nevertheless, the excessive computational complexity of
the more advanced regression techniques still hinders their
widespread application in robotics. Models that have been
learned offline can only approximate the model correctly in the
area of the state space that is covered by the sampled data, and
often do not generalize beyond that region. Thus, in order to cope
with unknown state space regions online model learning is
essential. Furthermore, it also allows the adaptation of the model
to changes in the robot dynamics, for example, due to unforeseen

loads or time-variant nonlinearities such as backlash, complex
friction and stiction.

However, real-time online model learning poses three major
challenges: first, the learning and prediction processes need to be
sufficiently fast; second, the learning system needs to deal with
large amounts of data; third, the data arrives as a continuous
stream and, thus, the model has to be continuously adapted to
new training examples. A few approaches for real-time model
learning for robotics have been introduced in the machine
learning literature, such as locally weighted projection regres-
sion [18] or local Gaussian process regression [10]. In these
methods, the state space is partitioned into local regions for
which local models are approximated and, thus, these methods
will not make use of the global behavior of the embedded
functions. As the proper allocation of relevant areas of the state
space is essential, appropriate online clustering becomes a central
problem for these approaches. For high dimensional data, parti-
tioning of the state space is well-known to be a difficult
issue [18,10]. To circumvent this online clustering, an alternative
is to find a sparse representation of the known data [12,15,6]. For
robot applications, however, it requires finding an incremental
sparsification method applicable in real-time online learning—a
major challenge tackled in this paper.

Inspired by the work in [15,3], we propose a method for
incremental, online sparsification which can be integrated into
several existing online regression methods, making them applicable
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for model learning in real-time. The suggested sparsification is
performed using a test of linear independence to select a sparse
subset of the training data points, often called the dictionary. The
resulting framework allows us to derive criteria for incremental
insertion and deletion of dictionary data points, which are two
essential operations in such an online learning scenario. For evalua-
tion, we combine our sparsification framework with an incremental
approach for Gaussian process regression (GPR) as described in [10].
The resulting algorithm is applied in online learning of the inverse
dynamics model for robot control [17,9].

The rest of the paper will be organized as follows: first, we
present our sparsification approach which enables real-time
online model learning. In Section 3, the efficiency of the proposed
approach in combination with an incremental GPR update is
demonstrated by an offline comparison of learning inverse
dynamics models with well-established regression methods, i.e.,
n-support vector regression [16], standard Gaussian process
regression [12], locally weighted projection regression [18] and
local Gaussian process regression [10]. Finally, the capability of
incremental GPR using online sparsification for real-time model
learning will be illustrated by online approximation of inverse
dynamics models for real-time tracking control on a Barrett
WAM. A conclusion will be given in Section 4.

2. Incremental sparsification for real-time online model
learning

In this section, we introduce a sparsification method which –
in combination with an incremental kernel regression – enables
fast, real-time model learning. The proposed sparsification
approach is formulated within the framework of kernel methods.
Therefore, we first present the basic intuition behind the kernel
methods and motivate the need of online sparsification. Subse-
quently, we describe the proposed sparsification method in
details.

2.1. Model learning with kernel methods

By learning a model, we want to approximate a mapping from
the input set X to the target set Y. Given n training data points
fxi,yig

n
i ¼ 1, we intend to discover the latent function f ðxiÞ which

transforms the input vector xi into a target value yi given by
the model yi ¼ f ðxiÞþei, where ei represents a noise term. In
general, it is assumed that f ðxÞ can be parametrized as
f ðxÞ ¼/ðxÞT w, where / is a feature vector mapping the input x
into some high dimensional space and w is the corresponding
weight vector [15,12]. The weight w can be represented as a
linear combination of the input vectors in the feature space, i.e.,
w¼

Pn
i ¼ 1 ai/ðxiÞ with ai denoting the linear coefficients. Using

these results, the prediction ŷ of a query point x can be given as

ŷ ¼ f̂ ðxÞ ¼
Xn

i ¼ 1

ai//ðxiÞ,/ðxÞS, ¼
Xn

i ¼ 1

aikðxi,xÞ: ð1Þ

As indicated by Eq. (1), the inner product of feature vectors
//ðxiÞ,/ðxÞS can be represented as a kernel value kðxi,xÞ [15].
Thus, instead of finding a feature vector, only appropriate kernels
need to be determined. An often used kernel is, for example, the
Gaussian kernel

kðxp,xqÞ ¼ expð�1
2ðxp�xqÞ

T Wðxp�xqÞÞ, ð2Þ

where W denotes the kernel widths [15,12]. For employing kernel
methods in model learning, however, one needs to estimate the
linear coefficients ai using training examples. State-of-the-art
kernel methods, such as kernel ridge regression, support vector
regression (SVR) or Gaussian process regression (GPR), differ in

the approaches for estimating ai [15,12,4]. While support vector
regression estimates the linear coefficients by optimization using
training data [15], kernel ridge regression and Gaussian process
regression basically solve the problem by matrix inversion [4,12]
(see the Appendix for a short review of GPR). The complexity of
model learning with kernel methods, i.e., the estimation of ai,
depends largely on the number of training examples. In GPR, for
example, the computational complexity is Oðn3Þ, if the model is
obtained in batch learning.

However, online model learning requires incremental updates,
e.g., incremental estimation of ai, as the data arrives sequentially.
There have been many attempts to develop incremental, online
algorithms for kernel methods, such as incremental SVM [2],
sequential SVR [19], recursive kernel learning with NARX form [6]
or the kernel recursive least-squares algorithm [3], for an over-
view see [15]. However, most incremental kernel methods do not
scale to online learning in real-time, e.g., for online learning with
model updates at 50 Hz or faster. The main reason is that they are
neither sparse [2,19], as they use the complete data set for model
training, nor do they restrict the size of the sparse set [3]. To
overcome these shortcomings, we propose the setup illustrated
in Fig. 1.

To ensure real-time constraints, we train the model using a
dictionary with a fixed budget. The budget of the dictionary, i.e.,
the sparse set, needs to be determined from the intended learning
speed and available computational power. To efficiently make use
of the stream of continuously arriving data, we select only the
most informative data points for the dictionary. If the budget limit
is reached, dictionary points will need to be deleted. Finally, for
the model training using dictionary data, most incremental kernel
regression methods can be employed, e.g., incremental GPR as
described in [10], sequential SVR [19] or incremental SVM [2].

Inspired by the work in [3,14], we use a linear independence
measure to select the most informative points given the current
dictionary. Based on this measure, we derive criteria to remove
data points from the dictionary, if a given limit is reached. The
following sections describe the proposed approach in detail.

2.2. Sparsification using linear independence test

The main idea in our sparsification approach is that we intend
to cover the relevant state space at the best, given a limited
number of dictionary points. At any point in time, our algorithm
maintains a dictionary D¼ fdig

m
i ¼ 1 where m denotes the current

number of dictionary points di. The choice of the dictionary
element di might be crucial for particular application and will
be discussed in Section 2.5. To test whether a new point dmþ1

should be inserted into the dictionary, we need to ensure that it
cannot be approximated in the feature space spanned by the
current dictionary set. This test can be performed using a measure
d defined as

d¼
Xm
i ¼ 1

ai/ðdiÞ�/ðdmþ1Þ

�����
�����

2

, ð3Þ

(see, e.g., [14,15] for background information), where ai denote
the coefficients of linear dependence. Eq. (3) can be understood as

data
stream
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Fig. 1. Sparsification for online model learning.
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