
Dynamics of an adaptive higher-order Cohen–Grossberg model

Xiaofeng Liao a,n, Tingwen Huang b, Chuangdong Li a

a College of Electronic and Information Engineering, Southwest University, Chongqing 400715, PR China
b Texas A&M University at Qatar, Doha, P.O. Box 23874, Qatar

a r t i c l e i n f o

Article history:
Received 8 December 2012
Received in revised form
7 February 2013
Accepted 13 March 2013
Communicated by H. Jiang
Available online 12 June 2013

Keywords:
Higher-order networks
Hebbian learning rule
Asymptotic stability
Exponential stability
Periodic solutions

a b s t r a c t

In this paper, we study the dynamical behavior of an adaptive higher-order Cohen–Grossberg model and
choose a biologically plausible rule specifying how the connection weights will vary in time, i.e., we
incorporate an unsupervised Hebbian-type learning rule with a higher-order Cohen–Grossberg model. By
constructing several Lyapunov functions, some sufficient conditions for the asymptotic and exponential
stability of the equilibrium are derived. Furthermore, we also study how a temporally varying, in
particular, a periodic environment, can influence on the dynamics of this model, i.e., the neuronal
parameters, synaptic weights, and gains can either be temporally uniform or be periodic with same
period as that of the stimulus. Sufficient condition for the existence of a globally attractive periodic
solution associated with a given periodic external stimulus is also derived. Some numerical examples are
employed to illustrate our theoretical results.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Generally, a neural network can be thought of as a network of
interconnected neurons in which activity levels at each neuron are
inhibited or exited by the activity of the other neurons. This can
also be seen as logically equivalent to an interacting set of neurons
with the activation of each neuron affected negatively or positively
by its competition or cooperation with other neurons. Recently,
research on artificial neural networks has become an exciting new
branch of artificial intelligence. It is a fascinating field both from a
fundamental point of view (nonlinear dynamical systems) as well
as for application prospects (non-programmed adaptive informa-
tion processing). A large variety of models for artificial neural
networks(ANNs) have been proposed in the past with strongly
increased research activities over the past few years [1–30].

One of best-analyzed mathematical models for neural activity
is the Cohen–Grossberg model [3,4,14–16,20,22,23,25]. With con-
stant values of the synaptic connection weights, however, this
system does not have capability for modeling adaptation, which is
a vital component in any neural network or learning model.
Adaptation in neural networks is most often incorporated by
allowing the weights of the synaptic connections between neurons
to vary in time. Literature dealing with time-varying connection
weights or network parameters seems to be scarce; such studies
are, however, important to understand the dynamical character-
istics of neuronal behavior in time-varying connection weight’s
environments. Furthermore, in the Cohen–Grossberg model, this

may be accomplished by allowing the interaction coefficients to
vary in time [19,23,24].

In the previous papers [17,23,24], the authors analyzed a neural
network model with nonconstant interaction coefficients, and
showed that their asymptotic behavior was distinctly different
from that of the corresponding constant-coefficient systems. In
[19,24], the authors have extended that analysis of systems of
connection weight depending on neuron states, and showed that
for certain choices of the parameters, the resulting dynamical
systems have an asymptotically stable equilibrium point and can
therefore be embedded in a simple type of classification network.
Usually, a neural network should be dynamically stable, i.e., it
should not exhibit chaotic behavior but go into stationary states
for large times. And at the same time, the dynamical behavior of
the activation states and connection strengths of an ANN should,
at least on a rudimentary level, be consistent with that of the
corresponding neurons and synapses in the brain. The thrust of
this paper is to choose a biologically plausible rule specifying how
the weights will vary and then determine analytically which type
of stability results.

The importance of dynamical stability has been particularly
emphasized in the adaptive bidirectional associative memory
models [5–7]. However, a symmetric connection matrix and a
global time scale are employed therein, which does not apply with
biological plausibility. The main point of the present work is to
preserve stability while replacing the symmetric weights used in
stable neural systems by asymmetric connections of a specific
kind, as well as to study its consequences.

Recently, limit cycles, strange attractors and other dynamical
phenomena have been found and used by many authors to
represent encoded temporal patterns as associative memories
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[17,26,27]. Most of the existing literature on theoretical studies of
artificial neural network is predominantly concerned with auton-
omous systems containing temporally uniform network para-
meters and external input stimuli. In [28,29], the authors have
found that assembles of cells in the visual cortex oscillate syn-
chronously in response to external stimuli. Such a synchrony is a
manifestation of the encoding process of temporally varying
external stimuli. Hence, we will study how a temporally varying,
in particular, a periodic environment, can influence on the
dynamics of a higher-order Cohen–Grossberg model, in addition
to the temporal variant of the input, we also incorporate an
unsupervised learning algorithm which is similar to Hebbian-
type learning rule in the processing part of the neuronal archi-
tecture [12,13].

The organization of this paper is as follows. In Section 2, by
combining an unsupervised Hebbian-type learning rule with
higher-order Cohen–Grossberg model, we obtain an adaptive
higher-order Cohen–Grossberg model. Our learning rule which is
only similar to an unsupervised Hebbian-type learning rule is
conjectural since it is not validated by neurophysiological evidence
or experiments of Amari and Gopalsamy [2,18]. In artificial neural
networks, it is shown that such higher-oder synaptic connections
can improve the storage capacity [30]. convergence rate and solve
more general optimization problems [9–11,21]. In Section 3, by
using Brouwer’s fixed point theorem, we can derive sufficient
conditions for the existence of the equilibrium of our proposed
model. It will be interesting to obtain sufficient conditions for the
existence of an equilibrium which will also guarantee some sort of
the stability of the equilibrium also. In Section 4, we derive
sufficient conditions for the asymptotic and exponential stability
of the equilibrium by constructing several Lyapunov functions. In
Section 5, we obtain sufficient conditions for the existence (or
encoding) of a globally attractive (heteroassociative recall) peri-
odic solution(or a pattern) associated with a given periodic
external stimulus. The neuronal parameters, synaptic connection
weights and gains can either be temporally uniform or be periodic
with the same period as that of the stimulus. In Section 6, several
examples are employed to illustrate the correctness of our
obtained results. Some conclusions and further works are also
given in Section 7.

2. Model formulations and preliminaries

In this section, by combining an unsupervised Hebbian-type
learning rule with Cohen–Grossberg model, we derive the follow-
ing a class of higher-order Cohen–Grossberg models with learning
rule:
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>>>>>>>>>>>>:
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where t40; xiðtÞ; i¼ 1;2;⋯;n; denote the state variable of the ith
neuron, sjð⋅Þ; j¼ 1;2;⋯;n; denote the activation functions of the
jth neuron at time t; aið⋅Þ; i¼ 1;2;⋯;n; represent amplification
functions; bjð⋅Þ; i¼ 1;2;⋯;n;are appropriately behavioral func-
tions; tij; Tijk; i; j; k¼ 1;2;⋯;n; are the first-order and second-
order connection weights of neural network at time t, respectively;
wijðtÞ; i; j¼ 1;2;…;n; denote the synaptic vector of the neuron i
undergoing the temporal process of learning the signal vector
P ¼ ðp1; p2;⋯; pnÞT ; also wijðtÞ models the efficiency with which the

ith neuron’s jth synapse can transform presynaptic potential to
post-synaptic potential; Bi; i¼ 1;2;⋯;n;denote the uptake of the
input signal by the ith neuron; αi and βi denote disposable scaling
constants with αi40 and the vector I¼ ðI1; I2;⋯; InÞT denotes the
external input signal vector simulating the networks.

Throughout this section, we assume that

(H1). The amplification functions aið⋅Þ i¼ 1;2;⋯;n are continuous
and there exist constants ai,ai such that 0oai≤aiðxiÞ≤ai, for all
xi∈R; i¼ 1;2;⋯;n;

(H2). The behavioral functions bið⋅Þ and it’s inverse b−1i ð⋅Þ;
i¼ 1;2;⋯;n, are locally Lipschitz continuous and there exist
γi40; i¼ 1;2;⋯;n, such that
biðxÞ−biðyÞ

x−y ≥γi40, for all x≠y; i¼ 1;2;⋯;n;

(H3). For activation functions sjð⋅Þ; there exist positive constants Lj
and Mj such that

Lj ¼ sup
x≠y

��� sjðyÞ−sjðxÞ
y−x

��� and ���sjð⋅Þj≤Mj:

The initial conditions of system (1) are given by

xið0Þ ¼ φið0Þ; wijð0Þ ¼Φijð0Þ; i; j¼ 1;2;⋯;n:

We note that the second equation of system (1) corresponds to
an unsupervised Hebbian-type learning algorithm with a feedback
term or forgetting terms which is introduced in order to control
the synaptic vector from becoming excessively large; such forget-
ting term was not present in the original version of the Hebbian
learning algorithms [2]. There is a wide variety of learning
algorithms used in the literature of neural network. The learning
dynamics incorporated in system (1) are based on a Hebbian
postulate along with a forgetting factor. For more details of several
learning algorithms, the readers may refer to [1,2,5,7].

For convenience, we introduce another auxiliary state variable
yiðtÞ; i¼ 1;2;⋯;n, which are defined by

yiðtÞ ¼ ∑
n

j ¼ 1
wijðtÞpj; i¼ 1;2;⋯;n; t40; ð2Þ

so that the second equation of system (1) becomes

dyiðtÞ
dt

¼−αiyiðtÞ þ βisiðxiÞ ∑
n

j ¼ 1
p2j :

Let ∑n
j ¼ 1p

2
j ¼ c for some nonnegative c and simplify system

(1) to the form

dxiðtÞ
dt ¼−aiðxiðtÞÞ b

�
iðxiðtÞÞ− ∑

n

j ¼ 1
tijsjðxjðtÞÞ− ∑

n

j ¼ 1
∑
n

k ¼ 1
TijksjðxjðtÞÞskðxkðtÞÞ

þ BiyiðtÞ þ Ii�
dyiðtÞ
dt ¼−αiyiðtÞ þ cβisiðxiÞ

8>>>><
>>>>:

ð3Þ
We note that that if we set c¼∑n

j ¼ 1p
2
j ¼ 0 in the above

equation, then system (1) will become uncoupled and will contain
the higher-order type Cohen–Grossberg networks. The dynamics
of such networks without learning components have been con-
sidered recently by some authors [3,4–16,20,22,23,25].

Thus, system (3) and its analysis should contain some of the results
known for higher-order networks with no learning components in it.

3. Existence of the equilibrium

In this section, by using the contraction mapping principle,
we can derive sufficient conditions for the existence of the
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