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1. Introduction

A classification framework for density level detection (DLD)
problem has been proposed in [11] and its error analysis has been
well established in [10,6] based on the capacity assumption of
covering numbers. The theoretical result is important to better
understand the mathematical foundation of classification method
for DLD. It is well known that the Rademacher complexity has
been used successfully for mathematical analysis of machine
learning algorithms, see e.g., [2,3,20]. In this paper, we consider
establishing the generalization error analysis of the DLD problem
by combining the Rademacher complexity with the iterative
technique in [13,19,7].

Let us recall the background of the density level detection
problem in Hilbert spaces (see [11,10,6]). Let (H, | - ||) be a separ-
able Hilbert space (possibly infinite dimensional) and let XcH with
[Ix|<B for all xeX. Let Q be an unknown data-generating distribu-
tion on X. One of the most common ways to define anomalies is by
saying that anomalies are not concentrated. A reference distribu-
tion x on X is introduced to describe the concentration of Q.
Assume that Q has a density h with respect to g, i.e. dQ =h du.
Given p > 0, the set {x : h(x) > p,xeX} is called p-level set of density h.
To define anomalies in terms of the concentration one only has to
fix a threshold p >0 so that a sample xeX is considered to be
anomalous whenever h(x)<p. The main task of the DLD problem is to
find p-level set {x: h(x) > p,xeX}. In this paper, we assume that
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{x : h(x) = p,xeX} is a p-zero set and hence it is also a Q-zero set (see
e.g., [9,17]).

Let S = {x;}*_, be a training set which is drawn independently
from Q. Given S, a DLD algorithm learns a function fs : X — R such
that the set {x: fs(x) > 0} is a good estimate of p-level set. For a
measurable function f: X — R the approximation performance is
measured (see [11]) by

Sunp(N=u({f > 03a{h > p),

where A denotes the symmetric difference.

Unfortunately, there is no known method to estimate S, ,(f)
from empirical data, and hence empirical comparison in terms of
S,.n,(f) is difficult. To overcome this difficulty, a novel performance
measure has been proposed in [11] by interpreting the DLD
problem as a binary classification problem. Let Y={-1,1}. The
measure is defined as below.

Definition 1. Let Q and x be probability measures on X
and se(0,1). Then the probability measure Qosu(A) on X x Y is
defined by

Qosu(A) = SExqlax, 1) + (1=5)Ex~ula(x, —1)

for all measurable subsets AcX x Y. Here I, denotes the indicator
function of a set A.

From the definition we know that P=Qo,u can be associated
with a binary classification problem where positive samples are
drawn from Q and negative samples are drawn from .
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The misclassification risk for a measurable function f: X—R
and a distribution P on Z=X x Y is defined by

Re(f) = P({(x,y) : sign()(x)#y}),

where sign t=1 if t > 0 and sign t=—1 otherwise.

It is well known that the Bayes classifier f. = sign(2P(y = 1|-)-1)

minimizes the misclassification risk Rp(f). Moreover, for P=Q6su
and s=1/(1+p), fe =l > py~Tinsy)-
As shown in [12], S,5,(—0 if and only if Rp(f)—>Rp(fo).
Thus, the problem of DLD can be transformed into finding a
good function f such that Rp(f)—> Rp(f.). Based on the interpreta-
tion, a kernel-based method is introduced in [11] to realize
DLD.

Recall that K : X x X— R is a Mercer kernel if it is continuous,
symmetric, and positive semi-definite. The candidate reproducing
kernel Hilbert space (RKHS) Hy associated with a Mercer kernel K
is defined as the closure of the linear span of the set of functions
{Kx=K(x,-) : xeX}, equipped with the inner product (,-)x defined
by (Kx,Ky)x = K(x,y) (see [1]). The reproducing property is given
by (Kx.f)x = f(x) for all xeX and feH.

For given positive labeled data T* =
dently from Q, the empirical quantity

{x;}_, drawn indepen-

Z A=fx), + Ex~;4(1 +fx)),.

n(1 +p) +p),

is considered in [11]. As pointed out by Steinwart et al. in [11],
although the measure y is known, the expectation Ex-,(1 + f(x),.
can be numerically computed through finite evaluation of f on
T‘:{x’j}]’."zl. Here T~ ={x;}[" ; are randomly drawn indepen-
dently accordmg to u. The emplrlcal risk of fis defined as

&r(f) =

E A=fex), + Z A+ £,

n(l+ p)i< m(1+ Picy

The following regularized algorithm has been proposed in [11]

fr=arg min(&r(f) + AIFIZ), -
feHxk

where 1> 0 is a regularization parameter.

Under the assumption on covering numbers, the convergence
of (1) is well understood in [10,6]. In this paper, inspired by
theoretical analysis in [3,5,7], we adopt the Rademacher average as
the capacity measure of hypothesis space. Dimension-free bound
of capacity can be derived in terms of the structural properties of
Rademacher average. Without the covering number assumption,
satisfactory learning rate is obtained by combining the Radema-
cher complexity with the iteration technique.

The rest of this paper is organized as follows. In Section 2, we
introduce the necessary definitions and present the main result on
learning rate. A detailed proof of the main result is provided in
Section 3.

2. Error analysis

To establish the relationship between S, ,(fr) and the excess
risk Rp(fr)-Rp(f.), we recall the following assumption [11,10].

Definition 2. Let x be a distribution on X and let h : X —[0,»] be a
measurable function with [hdu =1, i.e. h is a density with respect
to u. For p > 0 and 0<qs«, we say h has p-exponent q if there exists
a constant ¢ > 0 such that for all t >0

u({|h—pl<th=<ct.
The assumption on h is closely related to the definition of

Tsybakov noise in [18] for binary classification. If h has p-exponent
q<(0, ], Theorem 10 [11] shows that there exists a constant ¢ >0

such that
S,uhp (SIENNZC(Rp(N)—Rp(f )V @D, )

According to £7(f), we introduce the expected risk with a convex
loss

€)= 1, Bea (10, + T Evy (14 £,

We know that for every measurable function f : X - R
RP(f)_RP(fc)SE(f)_g(fc) (3)

according to Theorem 2.1 in [21] or Theorem 9.21 in [8].
Define the data independent regularization function

f=arg min(€(f) + A 17)- @)
From the definitions of frin (1) and f, in (4), we have

EF—-EFI<ET)-E(f ) + AIfIRST, 1) + D), )

where the sample error

ST, ={&f)=Er(fr)} +{Er(F)-EF )}

and the approximation error

D) = E(f )~E(f ) + Alf 1%

The bounding technique for sample error S(T,1) relies on
complexity measure of hypothesis function space Hy. To derive a
dimension-free estimate, we introduce Rademacher complexity
[2] as the measure of capacity.

Definition 3. Let ¢ be a probability distribution on a set X and
suppose that xq,...,x, are independent samples selected accord-
ing to this distribution. Let F be a class of real-valued functions
defined on X. The empirical Rademacher average of F is defined by

X1 m},

om are independent uniform {4+ 1}-valued random
ER m(F).

Rm(F) = {sup‘l_]

where o1, ...,
variables. The Rademacher complexity of F is R (F) =

In this paper, we adopt the following condition for approxima-
tion error, which has been extensively used in the literature. See
e.g., [4,19,8,20,6].

Definition 4. We say the target function f. can be approximated
with exponent 0 < <1 in H if there exists a constant c;>1, such
that

DA)=c’, Vi 0. (6)
It is now a position to present our main result on learning rate.
The detailed proof will be given in the next section.

Theorem 1. Let p > 0. Let u and Q be distributions on X such that Q
has a density h with respect to u. For s=1/(p+ 1) we write
P = Qosu. Assume that h has p-exponent q and f. can be approxi-
mated with exponent p in Hy. Then, for any 0<6§ <1, choosing
A=1/ym+1/4m¥ P, we have with confidence 1-5

s

ko+1\/ 1 1\ P/B+D@+1-/2% (p+1)g+1)
><f vn )

where C is a constant independent of m,n,s, and ko is a constant

satisfying (/i (/1T + Vi) P/ 12 = 0(k)

From the result in Theorem 1, we know that the balance of
samples is crucial to reach the fast learning rate. In particular,
learning rate of fr can be close to O(n~9/44+%) when m = O(n) and
B — 1.1t is worth noting that the presented convergence analysis is
independent of the assumption on covering numbers in [6].

Sﬂ,h.,,(fr)sC In <
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