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a b s t r a c t

This paper investigates a class of mixed recurrent neural networks with time delay in the leakage term
under impulsive perturbations. The mixed time-delays consist of both discrete and distributed delays. By
using the Lyapunov functional method, linear matrix inequality approach and general convex combina-
tion technique, two novel sufficient conditions are derived to ensure the global asymptotic stability of the
equilibrium point of the networks. The proposed results, which do not require the boundedness,
differentiability and monotonicity of the activation functions, can be easily checked via Matlab software.
Moreover, they indicate that the stability behavior of neural networks is very sensitive to the time delay
in the leakage term. Finally, numerical examples are given to demonstrate the effectiveness of our
theoretical results.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

During the past decades, great attention has been paid in the
literature to delayed neural networks, because of their applications
in many areas such as signal processing, associative memory,
pattern recognition, parallel computation and optimization. It is
well known that in implementation of neural networks, time
delays are unavoidably encountered due to the finite switching
speed of neurons and amplifiers. Furthermore, it has been pointed
out that time delays may lead to oscillation and instability of a
neural network. Therefore, it is of prime importance to consider
the delay effects on the dynamical behavior of systems. Recently,
neural networks with various types of delay have been widely
investigated by many authors, see [1–8] and references therein.
However, so far, there has been very little existing work on neural
networks with time delay in the leakage (or “forgetting”) term [9–
15]. This is due to some theoretical and technical difficulties [9]. In
fact, time delay in the leakage term also has great impact on the
dynamics of neural networks. As pointed out by Gopalsamy [10],
time delay in the stabilizing negative feedback term has a
tendency to destabilize a system. This observation can be illu-
strated by Example 1.1 in [12].

On the other hand, besides delays effects, impulsive effects are
also likely to exist in the neural network system. Generally
speaking, the states of real neural networks are often subject to
instantaneous perturbations and experience abrupt change at
certain moments of time, which can be caused by switching
phenomenon, frequency change, or other sudden noise, i.e.,
impulsive effects. Moreover, neural networks are subject to
impulsive perturbations which in turn affect the dynamical
behaviors of the system. Therefore, impulsive perturbations
should be taken into account when studying the stability of neural
networks. It is inspiring that in recent years considerable attention
has been paid to investigating the stability analysis of impulsive
neural networks. The reason is twofold: one is that impulsive
perturbations occur in many important fields such as medicine,
biology, economics, mechanics, electronics, and telecommunica-
tions, the other is that an impulsive neural network model belongs
to a new category of dynamical systems, which is neither purely
continuous-time nor purely discrete-time one. Since this kind of
model displays a combination of the characteristics of both
continuous-time and discrete-time systems, it is difficult and
challenging to discuss the stability analysis of an impulsive neural
network [16–20].

Motivated by aforementioned discussion, this paper considers a
class of mixed recurrent neural networks with time delay in the
leakage term under impulsive perturbations in which the encoun-
tered instantaneous perturbations depend on not only the current
state of neurons at impulse times but also the state of neurons in
recent history. By using the Lyapunov functional method, linear
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matrix inequality approach and general convex combination
technique, two novel sufficient conditions are derived to ensure
the global asymptotic stability of the equilibrium point of the
networks. The proposed results, which do not require the bound-
edness, differentiability and monotonicity of the activation func-
tions, can be easily checked via Matlab software. Moreover, they
indicate that the stability behavior of neural networks is very
sensitive to the time delay in the leakage term. In the absence of
leakage delay, the obtained results are also new ones. Finally,
numerical examples are given to demonstrate the effectiveness
and less conservativeness of our theoretical results.

Notations: Throughout this paper, let Zþ denote the set of
positive integers, ∥y∥ denote the Euclidean norm of a vector y∈Rn;

WT ;W−1; λMðWÞ; λmðWÞ and ∥W∥¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λMðWTWÞ

q
denote the trans-

pose, the inverse, the largest eigenvalue, the smallest eigenvalue,
and the spectral norm of a square matrix W respectively.
Let W40ð≤0Þ denote a positive (semi-negative) definite sym-
metric matrix, I denote the identity matrix with appropriate
dimension. N¼ f1;2;…;ng and n represents the element below
the main diagonal of a symmetric block matrix. The shorthand
colfM1;M2;…;Mkg denotes a column matrix with the matrices
M1;M2;…;Mk:

2. Problem description and preliminaries

Consider the following mixed recurrent neural network model
with leakage delay and impulsive perturbations

_xðtÞ ¼−Cxðt−hÞ þ Af ðxðtÞÞ þ Bf ðxðt−τðtÞÞÞ þ D
R t
t−sðtÞ f ðxðsÞÞ dsþ U; t40; t≠tk;

ΔxðtkÞ ¼ xðtkÞ−xðt−k Þ ¼ Jkðxðt−k ÞÞ; k∈Zþ;

xðsÞ ¼ φðsÞ; s∈½−ρ;0�;

8>><
>>:

ð2:1Þ
where xðtÞ ¼ ½x1ðtÞ; x2ðtÞ;…; xnðtÞ�T is the neural state vectors, C is a
positive diagonal matrix, A;B;D are the connection weight matrix,
the discretely delayed connection weight matrix, and the distribu-
tively delayed connection weight matrix, respectively; f ðxðtÞÞ ¼
½f 1ðx1ðtÞÞ; f 2ðx2ðtÞÞ;…; f nðxnðtÞÞ�T denotes the activation function,
h40;0≤τðtÞ≤τ ;0≤sðtÞ≤s are bounded and unknown delays, τ ; s
are positive scalars, U ¼ ½u1;u2;…;un�T is the constant external
input vector, function φiðtÞði∈NÞ is continuous on ½−ρ;0�; ρ¼
_maxfh; τ ; sg, the norm is defined by

∥φ∥ρ ¼max sup
−ρ≤s≤0

∥φðsÞ∥; sup
−h≤s≤0

∥ _φðsÞ∥; sup
−τ≤s≤0

∥ _φðsÞ∥
( )

:

Firstly, we make the following assumptions:
(H1) The delay satisfies that _τðtÞ≤ηo1.
(H2) There exist constants l−j ; l

þ
j such that l−j o lþj and

l−j ≤
f jðuÞ−f jðvÞ

u−v
≤lþj ∀u; v∈R; u≠v; j∈N:

For notational simplicity, we denote

Σ ¼ diagflþ1 ;…lþn g;Σ ¼ diagfl−1 ;…l−n g;

Σ1 ¼ diagfl−1 lþ1 ;…; l−n l
þ
n g;Σ2 ¼ 1

2diagfl
−
1 þ lþ1 ;…; l−n þ lþn g:

Remark 1. As pointed out by Liu et al. [21], the constants l−j ; l
þ
j are

allowed to be positive, negative, or zero. Hence, the resulting
activation functions may be non-monotonic, and more general
than the usual sigmoid functions in [3,4,6,7].

(H3) Every function JkðxÞ : Rn-Rn is continuous for any x∈Rn,
k∈Zþ.

(H4) The impulsive time instant tk satisfy 0¼ t0ot1o⋯otk-
∞ and infk∈Zþ ftk−tk−1g40.

In order to obtain the results, we need the following lemmas.

Lemma 1 (see Zhang and Quan [22] and Poznyak and Sanchez
[23]). Let X;Y and P be real matrices of appropriate dimensions with
P40. Then for any positive scalar ε the following matrix inequality
holds:

XTY þ YTX≤ε−1XTP−1X þ εYTPY :

Lemma 2 (Jensen integral inequality, see Gu [24]). For any constant
matrix M40, any scalars a and b with aob, and a vector function
χðtÞ : ½a; b�-R such that the integrals concerned are well defined,
then the following inequality holds:

Z b

a
χðsÞ ds

 !T

M
Z b

a
χðsÞ ds

 !
≤ðb−aÞ

Z b

a
χðsÞTMχðsÞ ds:

Lemma 3 (Yue et al. [25]). Suppose that ℧;℧ij≥0ði; j¼ 1;2Þ are
symmetric matrices of appropriate dimensions, α∈½0;1�; β∈½0;1�, then
℧þ ½ð1−αÞ℧11 þ α℧12� þ ½ð1−βÞ℧21 þ β℧22�o0 holds if the following
four inequalities ℧þ ℧11 þ ℧21o0, ℧þ ℧11 þ℧22o0, ℧þ ℧12 þ
℧21o0 and ℧þ ℧12 þ℧22o0 hold simultaneously.

Lemma 4. Assume that ν; μ; κ; ζ; ϑ; ϑ; θ ; θ are real scalars such that
ν≤1; κ≤1; νþ μ≤4; κ þ ζ≤4; and ϑoϑ; θoθ : Let ϑ : R-ðϑ; ϑÞ; θ :
R-ðθ ; θÞ be real functions. Then for any non-negative scalars
α; β; ι; ϵ the following inequality holds

−
α

ϑðtÞ−ϑ −
β

ϑ−ϑðtÞ−
ι

θðtÞ−θ −
ϵ

θ−θðtÞ

≤max −
να þ μβ

ϑ−ϑ
−
κιþ ζϵ

θ−θ
;−

να þ μβ

ϑ−ϑ
−
ζιþ κϵ

θ−θ
;

(

−
μαþ νβ

ϑ−ϑ
−
κιþ ζϵ

θ−θ
;−

μαþ νβ

ϑ−ϑ
−
ζιþ κϵ

θ−θ

)
:

Proof. It is easy to see that we need only verify the following
inequality:

−
α

ϑðtÞ−ϑ −
β

ϑ−ϑðtÞ≤
1

ϑ−ϑ
maxf−να−μβ;−μα−νβg: ð2:2Þ

Without loss of generality, we assume that ν≤μ. First consider
the case that α≤β. It is easy to see that maxf−να−μβ;
−μα−νβg ¼ −μα−νβ: Therefore, we have

ðϑðtÞ−ϑÞðϑ−ϑðtÞÞð−μα−νβÞ þ ðϑ−ϑÞ½ðϑ−ϑðtÞÞαþ ðϑðtÞ−ϑÞβ�
¼ ðϑ−ϑðtÞÞ½ϑ þ ðμ−1Þϑ−μϑðtÞ�α þ ðϑðtÞ−ϑÞ½ð1−νÞðϑ−ϑðtÞÞ

þðϑðtÞ−ϑÞ�β≥fðϑ−ϑðtÞÞ½ϑ þ ðμ−1Þϑ−μϑðtÞ�
þðϑðtÞ−ϑÞ½ð1−νÞðϑ−ϑðtÞÞ þ ðϑðtÞ−ϑÞ�gα

¼ α

4
½ðνþ μÞð2ϑðtÞ−ϑ−ϑÞ2 þ ð4−ν−μÞðϑ−ϑÞ2�

≥0:

That is

1
ϑ−ϑ

maxf−να−μβ;−μα−νβg ¼ 1
ϑ−ϑ

ð−μα−νβÞ≥− α

ϑðtÞ−ϑ −
β

ϑ−ϑðtÞ :

Similarly, we can also conclude that inequality (2.2) holds for
α4β. Now, proof of Lemma 4 is completed. □

3. Main result

As usual, a vector xn ¼ ½xn1; xn2;…; xnn�T is said to be an equilibrium
point of system (2.1) if it satisfies Cxn ¼ ½Aþ Bþ sðtÞD�f ðxnÞ þ U: In
this paper, we assume that some conditions are satisfied such that
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