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a b s t r a c t

Genetic oscillator networks (GONs) are inherently coupled complex systems where the nodes indicate

the biochemicals and the couplings represent the biochemical interactions. This paper is concerned

with the synchronization problem of a general class of stochastic GONs with time delays and Markovian

jumping parameters, where the GONs are subject to both the stochastic disturbances and the

Markovian parameter switching. The regulatory functions of the addressed GONs are described by the

sector-like nonlinear functions. By applying up-to-date ‘delay-fractioning’ approach for achieving

delay-dependent conditions, we construct novel matrix functional to derive the synchronization criteria

for the GONs that are formulated in terms of linear matrix inequalities (LMIs). Note that LMIs are easily

solvable by the Matlab toolbox. A simulation example is used to demonstrate the synchronization

phenomena within biological organisms of a given GON and therefore shows the applicability of the

obtained results.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

The oscillatory behavior of genetic networks, as a fundamental
challenge in the research field of systems biology, has recently
attracted an increasing attention, see e.g. [1,5,6,10–12,14,29]. Gen-
erally speaking, the genetic networks are a class of complex
dynamical networks since the genetic oscillators can be expressed
in terms of complicated biological functions [9,16,17,23]. In such kind
of genetic oscillator networks (GONs), the nodes represent the genetic
oscillators, while the inner or outer couplings denote the interactions.
In order to research into the intrinsic biological organisms of GONs, it
is of great importance to investigate the collective dynamics of
coupled genetic oscillators with hope to understand the rhythmic
behavior of living organisms. Synchronization, as a universal
phenomenon, occurs typically in genetic networks. For example, in

[19], a synthetic gene network in Escherichia coli has been shown to
have two features: the system acts as a relaxation oscillator and uses
an intercell signaling mechanism to couple the oscillators and induce
synchronous oscillations. A coupling scheme has been proposed that
leads to synchronous behavior across a population of cells, and an
analytical treatment of the synchronization process has been
conducted. Up to now, the synchronization motion analysis problem
for genetic oscillator networks has attracted considerate research
attention. In [11,14,16,17], the synchronization problem in genetic
networks has been thoroughly investigated via experiments (e.g.
synchronization of cellular clock in the suprachiasmatic nucleus in
genetic networks), numerical simulation (e.g. biological networks of
identical genetic oscillators) as well as theoretical analysis (i.e.
synchronizability of coupled nonidentical genetic oscillators).

It has been demonstrated experimentally that the network
states or oscillatory expressions are significantly affected by the
inherent state delay due primarily to the slow processes of
transcription, translation, and translocation or the finite switching
speed of amplifiers. From the synthetic biology viewpoint, it is
necessary to address the time-delay effects in the mathematical
models, and then a more accurate state value of the biological
oscillators could be obtained from oscillatory expression mea-
surements [22,26,30]. Note that the stability analysis issue of
genetic regulatory networks with either constant or time-varying
delays has recently been a research focus, see [30] and references
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therein. It is worth mentioning that a novel approach named
‘delay-fractioning’ has been exploited in many reported results in
order to achieve less conservative delay-dependence conditions,
see e.g. [20,27,28,35].

Biological data promises to enhance the fundamental under-
standing of life at the molecular level, from regulation of gene
expression and gene function to cellular mechanisms, and may
prove useful in medical diagnosis, treatment, and drug design.
Substantial effort is being made to build models to analyze
microarray data. It is evident that genetic networks are always
affected by the random fluctuations [1,3,13,21,25,26,29,31].
Therefore, to have an accurate prediction of the dynamical
behaviors of genetic oscillators, it is important to consider the
random effects including intrinsic and extrinsic noise perturba-
tions [1,3,25,26,29]. Also, as shown in [7,8,13], in gene regulatory
networks, the transition from one state to the next usually takes
place in accordance with certain transition probabilities, which
forms a homogeneous Markov chain with finite state space.
Subsequently, the dynamics of the so-called Markovian genetic
regulatory networks, which are subject to mode switching (or
jumping), has been thoroughly investigated in [7,8]. It should be
pointed out that, up to now, the control and filtering problems for
Markovian jumping systems have already been widely studied
[4,18,33,34]. Recently, the stochastic synchrony study has been
carried out for genetic networks in [32], where an adaptive
filtering approach is elegantly developed to estimate uncertain
delayed genetic regulatory networks. However, the stochastic
synchrony problem for Markovian delayed genetic networks of
specific structures has not gained adequate research attention yet,
and this constitutes the main focus of this paper.

In this paper, we aim to make one of the first attempts to
investigate the synchronization problem for stochastic GONs with
Markovian jumping parameters and time delays so as to exhibit
more realistic characteristics of the GONs, where the regulation
functions are assumed to be sector-like, and the intrinsically
stochastic fluctuation is a scalar Brownian motion. The main
results obtained are illustrated through a numerical simulation
example. The rest of this paper is organized as follows. Section 2
introduces the model formulation and some preliminary works. In
Section 3, by utilizing the approach of ‘delay-fractioning’ and a
novel matrix functional method, stochastic analysis is conducted
to obtain delay-dependent sufficient criteria described by linear
matrix inequalities (LMIs) [2] that can be easily checked by using
standard numerical software. Section 4 illustrates the obtained
results and Section 5 concludes the paper.

Notations: Throughout this paper, Rn and Rn�m denote,
respectively, the n dimensional Euclidean space and the set of
all n�m real matrices. P40 means that matrix P is real,
symmetric and positive definite. I and 0 denote the identity
matrix and the zero matrix with compatible dimensions,
respectively; and diagf� � �g stands for a block-diagonal matrix,
colf� � �g denotes a matrix column with blocks given by the
matrices in f� � �g. If A is a matrix, the notation lmaxðAÞ means the
largest eigenvalue of A. The superscript ‘T’ stands for matrix
transposition and the asterisk ‘*’ in a matrix is used to represent
the term which is induced by symmetry. The Kronecker product
of matrices Q ARm�n and RARp�q is a matrix in Rmp�nq and
denoted as Q � R. We let Cð½�h,0�;Rn

Þ denote the family of all
continuous functions j from [�h, 0] to Rn with the norm
jjj ¼ sup�hryr0JjðyÞJ, where J � J is the Euclidean norm on Rn.
Moreover, let ðO,F ,fF tgtZ0,PÞ be a complete probability space
with a filtration fF tgtZ0 satisfying the usual conditions (i.e.
the filtration contains all P�null sets and is right continuous).
Denote by Lp

F0
ð½�h,0�;Rn

Þ the family of all F0�measurable
Cð½-h,0�;Rn

Þ�valued random variables x¼ fxðyÞ : �hryr0g such
that sup�hryr0EfjxðyÞjpgo1, where Ef�g stands for the mathe-

matical expectation operator with respect to the given probability
measure P. Sometimes, the arguments of a function will be
omitted in the analysis when no confusion arises.

2. Problem formulation and preliminaries

Let r(t) (tZ0Þ be a right-continuous Markovian chain on a
probability space ðO,F ,fF tgtZ0,PÞ taking values in a finite state
space S¼ f1,2, . . . ,mg with generator P¼ fpijg given by

PfrðtþDÞ ¼ jjrðtÞ ¼ ig ¼
pijDþoðDÞ if ia j,

1þpijDþoðDÞ if i¼ j:

(

Here D40, and pijZ0 is the transition rate from i to j if ja i while

pii ¼�
X
ja i

pij:

Among many models of genetic networks, the differential
equation model is one of the mostly adopted ones. A general
delayed genetic oscillator network could be described by the
following vector form [16,17]:

dyðtÞ

dt
¼ AyðtÞþ

Xl

i ¼ 1

BifiðyðtÞÞþ
Xl

i ¼ 1

Cigiðyðt�tÞÞ, ð1Þ

where l is a positive integer and yðtÞ ¼ colfy1ðtÞ,y2ðtÞ, . . . ,ynðtÞgARn

represents the concentrations of proteins, mRNAs and chemical
complexes; A, Bi, Ci (i¼1,2,y, l) are matrices in Rn�n; fiðyðtÞÞ ¼

colffi1ðy1ðtÞÞ,fi2ðy2ðtÞÞ, . . . ,finðynðtÞÞgARn and giðyðt�tÞÞ ¼ colfgi1

ðy1ðt�tÞÞ,gi2ðy2ðt�tÞÞ, . . . ,ginðynðt�tÞÞgARn are monotonic genetic
regulatory functions which are usually taken as the Hill form. The
scalar t40 denotes the translation time delay in the translation
process.

As discussed in the Introduction, the genetic oscillators in
biological networks are tightly coupled between each other, and
both the stochastic perturbations [1,3,13,21,25,26,29] and Mar-
kovian jumping parameters [13] are playing important roles in
generating the network dynamics. Therefore, we consider the
following coupled GONs consisting of N genetic oscillators with
Markovian jumping parameters and time delays:

dxkðtÞ ¼ AðrðtÞÞxkðtÞþBðrðtÞÞf ðxkðtÞÞþCðrðtÞÞgðxkðt�tÞÞþ
XN

l ¼ 1

wklGrðtÞxlðtÞ

" #
dt

þskðxkðtÞ,xkðt�tÞ,t,rðtÞÞdoðtÞ,

xkðtÞ ¼fkðtÞ, rðtÞjt ¼ 0 ¼ r0AS, tA ½�t,0�, k¼ 1,2, . . . ,N, ð2Þ

where xkðtÞ ¼ colfxk1ðtÞ,xk2ðtÞ, . . . ,xknðtÞgARn is the state vector of
the kth genetic oscillator representing the concentrations of proteins,
mRNAs and chemical complexes, which are of limited values; for
rðtÞ ¼ iAS, A(i) includes the degradation terms and all the other
linear terms of the kth genetic oscillator; B(i), C(i) are known matrices
in Rn�n; f ðxkðtÞÞ ¼ colff1ðxk1ðtÞÞ,f2ðxk2ðtÞÞ, . . . ,fnðxknðtÞÞgARn and
gðxkðt�tÞÞ ¼ colfg1ðxk1ðt�tÞÞ,g2ðxk2ðt�tÞÞ, . . . ,gnðxknðt�tÞÞgARn are
usually monotonic functions satisfying the sector-bounded conditions
that will be given later; fkðtÞALp

F0
ð½�h,0�;Rn

Þ is the initial condition
of xk(t).

The matrix GrðtÞ ¼ ½gkl,rðtÞ�n�n is a matrix linking the state
variable of the lth genetic oscillator in the genetic network mode
r(t) if gkl,rðtÞa0; and W ¼ ½wkl�N�N is the coupling matrix that
represents the coupling topology, direction, as well as the
coupling strength of the genetic network. The definition is given
as follows: if there is a link from the kth oscillator to the lth
oscillator ðka lÞ, then wkl equals to a positive constant denoting
the coupling strength of this link; otherwise wkl¼0;
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