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a b s t r a c t

Residual analysis using hybrid Elman–NARX neural network along with embedding theorem is used to

analyze and predict chaotic time series. Using embedding theorem, the embedding parameters are

determined and the time series is reconstructed into proper phase space points. The embedded phase

space points are fed into an Elman neural network and trained. The residual of predicted time series is

analyzed, and it was observed that residuals demonstrate chaotic behaviour. The residuals are

considered as a new chaotic time series and reconstructed according to embedding theorem. A new

Elman neural network is trained to predict the future value of the residual time series. The residual

analysis is repeated several times. Finally, a NARX network is used to capture the relationship among

the predicted value of original time series and residuals and original time series. The method is applied

to Mackey–Glass and Lorenz equations which produce chaotic time series, and to a real life chaotic time

series, Sunspot time series, to evaluate the validity of the proposed technique. Numerical experimental

results confirm that the proposed method can predict the chaotic time series more effectively and

accurately when compared with the existing prediction methods.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

Over the last several decades, prediction of chaotic time series
has been a popular and challenging subject. Chaos theory as a new
area of mathematics has been used to analyze chaotic systems
and draw the hidden information from random-look data
produced by chaotic systems. Chaotic time series are determinis-
tic systems and inherit a high degree of complexity. Although,
chaotic time series show the characteristic of dynamical systems
as random, in the embedding phase space they present determi-
nistic behaviour [66].

The chaos theory, as an essential part of nonlinear theory, has
provided an appropriate tool to illustrate the characteristics of the
dynamical systems and predict the trend of complex systems.
There are four fundamental characteristics for chaotic systems:
aperiodic that is the same state will not be repeated, bounded

meaning that neighbour states remain within a finite range and
does not approach infinity, deterministic that there is a governing
rule with no random term to predict the future state of the
system, and sensitivity to initial conditions meaning that small
difference in initial conditions will cause two points close to each
other diverge as the state of system progress [62].

Takens’ [53] embedding theorem is an essential element of
chaotic time series analysis. A set of single observations from a

chaotic system can be reconstructed into a series of D-dimen-
sional vectors with two parameters of time delay and dimension.
Based on Takens’ theorem, if dimension is large enough, the
reconstructed vectors exhibit many of the significant entities of
the time series [12].

Prediction of nonlinear time series is a useful method to
evaluate characteristics of dynamical systems. Prediction of
chaotic time series have been observed in the areas of marketing
system [44], foreign exchange rate [5], signal processing [22],
supply chain management [61], traffic flow [39], power load [48],
weather forecast [31], Sunspot prediction [42] and many others.
Due to the importance of these fields, the interests in a robust
technique to predict chaotic time series have been increased.

A number of techniques to predict chaotic time series have
been introduced in the literature. A method of local modelling
was proposed by McNames [36]. Wichard and Ogorzalek [60]
described the use of ensemble methods to build proper models for
chaotic time series prediction. Zhang et al. [67] proposed a multi-
dimension prediction method using Lyapunov exponents.

Artificial neural networks (ANNs) have been also employed
independently or as an auxiliary tool to predict chaotic time
series. ANNs are nonlinear methods which mimic nerve system
[68]. They have functions of self-organizing, data-driven, self-
study, self-adaptive and associated memory [64,68]. ANNs can
learn from patterns and capture hidden functional relationships in
a given data even if the functional relationships are not known or
difficult to identify [64]. Using the training methods, an ANN can
be trained to identify the underlying correlation between the
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inputs and outputs. Later, the unseen inputs can be fed to the
trained ANN to generate appropriate outputs [11,17,41,43,64].

A number of researchers have utilized ANN to predict chaotic
time series. Multi-layer perceptron neural network (MLP) has been
used by Liu et al. [28] and Park et al. [42]. Zhang and Man [66],
Tenti [55], Ma et al. [32], and Assaad et al. [2] have utilized
recurrent neural network (RNN). Nonlinear Autoregressive model
with eXogenous input (NARX) has been also applied to chaotic time
series perdition by Menezes and Barreto [38] and Diaconescu [8].

Some other artificial intelligence (AI) methods such as radial
basis function network (RBF) [54,46], self-organizing map (SOM)
[3,26,51], support vector machine (SVM) [47,58], fuzzy and neuro-
fuzzy [14,65,24], and wavelet neural networks (WNN) [13,59]
among the others are used in the literature to forecast chaotic
time series.

In prediction methods, the analysis of residuals is under-
estimated. In some occasions, residuals are not due to random-
ness; therefore, residuals show high correlation meaning that the
prediction model has not completely captured the characteristics
of the system. There are occasions that residuals inherit the
characteristic of original system.

This study investigates the contribution of residual analysis to
increase the performance of prediction method. The proposed
method utilizes the embedding theorem to ‘‘unfold’’ the chaotic
time series and reconstruct the phase space points. Two well-
known dynamic neural networks, Elman and NARX networks are
selected for training purposes. An Elman Neural Network is
trained using gradient descent with momentum and adaptive
learning rate backpropagation algorithm to predict the future
value of the obtained phase space points and accordingly the
original time series. Normally, the residuals of predicted time
series show high degree correlation and demonstrate chaotic
behaviour. Therefore, the residuals are considered as a new
chaotic time series and similarly analyzed and predicted. The
residual analysis is repeated several times. Finally, a NARX neural
network is trained to capture the relationship among the
predicted value of original time series, residuals and original time
series. The weights and biases of NARX neural network is kept to
predict the future value of original time series. The block diagram
in Fig. 1 demonstrates the methodology developed in this study to
forecast chaotic time series.

The paper is organized as follows. Section 2 describes chaotic
time series and the method to reconstruct a time series. Section 3
briefly discusses dynamic neural networks. Section 4 illustrates
the proposed prediction technique in detail. In Section 5, the
prediction performance of the proposed technique on three well-
known chaotic time series, the Mackey–Glass, Lorenz and Sun-
spot, are studied. Finally, conclusions are given in Section 6.

2. Chaotic time series and embedding theorem

Many natural systems show nonlinear or chaotic behaviour.
Using chaos theory, these systems have been described by
mathematical equations. For a chaotic system, the phase space
is defined as a vector space Rn with each point in the phase space
being described by a n-dimensional vector s(t), which is required
to obtain the progression of the system [40]. s(t) is defined as

sðtÞ ¼ ½s1ðtÞ,s2ðtÞ,s3ðtÞ,:::,snðtÞ� ð1Þ

where t is an index for the time series and n is the dimension of
vector space Rn. With the use of the nonlinear function F: Rn-Rn,
which describes the system, the future value of the system at time
t+t can be determined by

sðtÞ-FðsðtÞÞ ¼ sðtþtÞ ð2Þ

A small change in the state of the system, s(t), will
substantially influence the trend of the system and after several
iterations, the system becomes unforeseeable. This behaviour of
dynamical systems is known as sensitivity to initial conditions or
butterfly effect [12,31].

The progression of a non-random system creates a trajectory
named an attractor. Takens’ [53] embedding theorem states
that because the value of s(t) and its components, s1(t), s2(t) , s3(t)
,y in a chaotic system are unknown; if one is able to observe a
single quantity or variable x(t) from this dynamical system, then
the attractor can be unfolded from this set of observed samples
[1]. This means that if a single quantity x(t) is observed from a
chaotic system, the reconstructed dynamics of a system
Y(t)¼[x(t), x(t�T), x(t�2T)y], with T defined as time delay, is
geometrically similar to the original attractor. Therefore, if a
dynamical system s(t)-s(t+1) exists, then sequential order of
reconstructed phase space points Y(t)-Y(t+1) follows the
unknown dynamics of s(t)-s(t+1). Therefore, the behaviour of
the actual system is reflected in the observed time series
generated from the system [21].

2.1. Determining chaos in time series

In analyzing time series, an important step is to determine the
characteristic of the data. The following methods have been used
to differentiate periodic or random data from chaotic data.

2.1.1. Fourier transform

Fourier transform can be used to identify chaos in a given
time series. It is common to plot power spectrum instead of
frequency spectrum. The power spectrum spikes at frequencies
that characterize the system for periodic data, and will be
approximately zero for the others. The broadband power
spectrum with broad peak proves the existence of chaos in the
time series [12].

2.1.2. Lyapunov exponent

An important characteristic of chaotic systems which is
defined as the butterfly effect is the high sensitivity of the system
to the initial conditions. If the high sensitivity to initial conditions
is detected in a system, the system can be considered chaotic [63].
Largest Lyapunov exponent is the most practical method to
identify chaotic behaviour in a system. Lyapunov exponent
quantify the divergence of neighbouring trajectories. Positive
Lyapunov exponent proves the existence of chaos in the
system [12].

2.1.3. Hurst exponent

Hurst is known for introducing Hurst exponent as a measure-
ment for the predictability of a time series [16]. Hurst exponent is
derived using R/S analysis. Hurst exponents can change between 0
and 1. Hurst exponent of 0.5 shows a random walk. A Hurst
exponent between 0.5 and 1 proves the presence of chaos in the
system.

2.1.4. Fractal dimension

Another method to identify the existence of chaos in a system
is Fractal dimension. Non-integer fractal dimension shows that
the system is chaotic. Correlation dimension is one of the most
common Fractal dimension used in literature [12,52]. If a sphere
of radius R is centred on a specific point in D-dimensional space,
then the mean of points in the sphere, C(R), excluding the center
point can be calculated. A plot of C(R) versus R should give an
approximately straight line whose slope is dc , the correlation
dimension. dc with integer value shows that the attractor is a
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