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In this paper, the author investigates the global synchronization problem for linearly coupled neural

networks with reaction–diffusion terms and unbounded time delays. The main difference of this paper

from previous works in literature is that the time delay can be unbounded and non-differential.

Moreover, the pinning control problem of such neural networks is also investigated. Some sufficient

criteria for synchronization are given by means of the linear matrix inequality (LMI). Finally, numerical

simulations are also given to show the validity of the obtained criteria.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

In the past few decades, various neural networks, such as
Hopfield neural networks, cellular neural networks, bidirectional
associative neural networks, and Cohen–Grossberg neural net-
works, etc., have been widely investigated and successfully
applied in many areas, such as combinatorial optimization, signal
or image processing, pattern recognition and associative memory
design, see [1,2] and references therein.

Generally, the neural network model is described by ordinary
differential equations; but in the real world, diffusion effect
cannot be avoided in the neural network model when electrons
are moving in asymmetric electromagnetic field, so we must
consider the space varying with the time, and in this case the
model should be expressed by partial differential equations. For
example, employing the properties of diffusion operator, Liang
and Cao [3] investigated the existence, uniqueness and global
exponential stability of the equilibrium point of delayed reaction–
diffusion recurrent neural networks by applying general Halanay
inequality; the global asymptotic stability of bi-directional
associative memory neural networks with distributed delays
and reaction–diffusion terms were studied by [4]; Qui [5] and Li
and Song [6] investigated the dynamical behaviors of impulsive

neural networks; Yang and Xu [7] had estimated the existence
range of the attracting sets and the periodic attractors for non-
autonomous reaction–diffusion neural networks with time-vary-
ing delays; Lu [8,9] and Wang and Lu [10] gave a better result on
stability analysis by analyzing the role of reaction–diffusion
terms; and it was also common to consider the diffusion effect in
biological systems, such as immigration, see [11].

Moreover, in neural processing and signal transmission, axonal
signal transmission delays often occur; moreover, in electronic
implementation of analog neural networks, time delay is usually
time varying due to the finite switching speed of amplifiers. It is
known that time delays may cause undesirable dynamical
network behaviors such as oscillation and instability. Therefore,
it is of great importance to study the global stability of neural
networks with delays. And in this case, the neural network
depends on not only the time but also the time delay, thus the
model is a functional differential equation [12]. Until now, a large
amount of results have been reported in the literature, and the
delay type can be constant [13], time varying [14], distributed
[15], unbounded [16–18], etc.

Therefore, the neural networks with reaction–diffusion effect
and time delays are more applicable in the real world, and many
such neural networks can result in a complex network by
mutually coupling. Recently, investigation of dynamical behaviors
in complex networks, especially the synchronization problem
[19], has attracted numerous scientists from diverse fields
including physics, biology, neuroscience, mathematics, chemistry
and ecology, etc. For example, in [20,21], the left eigenvector
corresponding to the zero eigenvalue of the diffusive coupling
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matrix was utilized to investigate the global synchronization for
linearly coupled networks; in [22,23], the synchronization of
nonlinearly coupled networks was investigated; in [24], the
adaptive synchronization algorithm was proposed and
proved strictly; and in [25], the pinning control problem for
complex networks was studied by adding a single controller.
More concretely, as for linearly coupled neural networks
with reaction–diffusion terms and time delays, asymptotic and
exponential synchronization problems were investigated by
[26–28], respectively.

To the best of our knowledge, few authors have considered
global synchronization problem of reaction–diffusion neural
networks with the Dirichlet boundary conditions and unbounded
and non-differential time varying delays, which is challenging and
important both in theories and applications. Motivated by above
discussions, in this paper, we will investigate the global
synchronization and pinning control problems for a class of
linearly coupled reaction–diffusion neural networks with the
Dirichlet boundary conditions and unbounded and non-differen-
tial time delays.

The paper is organized as follows. In Section 2, a model of
linearly coupled neural networks with reaction–diffusion terms
and unbounded time-varying delays is proposed at first, and a
new synchronization definition, called the m- synchronization, is
also defined. In Section 3, some necessary definitions, lemmas and
hypotheses are given. In Section 4, some criteria for the global
synchronization and pinning control of such linearly coupled
neural networks are derived. In Section 5, numerical examples are
presented to show the validity of the theoretical results. We
conclude this paper in Section 6.

Notations: Throughout this paper, we denote the vector
(1,y,1)T by 1. The identity matrix is denoted by I, the transpose
(or inverse) of any square matrix A is expressed as AT (or A�1).
A40 (Ao0,AZ0,Ar0) is used to denote a positive- (negative-,
semi-positive-, semi-negative-) definite matrix A. The dimension
of these vectors and matrices will be clear in the context. If all
eigenvalues of a matrix AARN�N are real, then we sort them as
l1ðAÞZl2ðAÞZ � � �ZlNðAÞ. mesO denotes the measure of the
region O. The Kronecker product of a n by m matrix A¼(aij) and a
p by q matrix B is the np by mq matrix A� B, defined as

A� B¼

a11B � � � a1mB

^ &

an1B anmB

0
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2. Model description

A single reaction–diffusion neural network with time-delays
and Dirichlet boundary conditions can be described by the
following differential equations:
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where j¼1,y,n; O¼ fx¼ ðx1,x2, . . . ,xmÞ
T
g is a compact set with

smooth boundary and mesO40 in space Rm; uj(t,x) is the state of

jth neuron at time t and in space x; gk,hk denote the activation
functions of the jth neuron in space x; w0

j 40 represents the rate
with which the jth neuron will reset its potential to the resting
state; wjk

1,2 are the connection weights; Djr Z0 means the
transmission diffusion coefficient along the jth neuron; Ij denotes
the external bias on the jth neuron; tðtÞ is the unbounded and
non-differential time delays; fjðs,xÞ are bounded and continuous
initial functions.

The discussion of existence, uniqueness and global conver-
gence of the equilibrium of neural network (1) can be found in [3]
and references therein. Without loss of generality, we let Ij¼0,
j¼1,y,n. Denote

W0 ¼ diagðw0
1, . . . ,w0

nÞARn�n, W1 ¼ ðw1
jkÞARn�n, W2 ¼ ðw2

jkÞARn�n

uðt,xÞ ¼ ðu1ðt,xÞ, . . . ,unðt,xÞÞT ARn, gðuÞ ¼ ðg1ðu1Þ, . . . ,gnðunÞÞ
T ARn

hðuðt�tðtÞ,xÞÞ ¼ ðh1ðu1ðt�tðtÞ,xÞÞ, . . . ,hnðunðt�tðtÞ,xÞÞÞT ARn

f rdðuðt,xÞÞ ¼
Xm
r ¼ 1

@

@xr
D1r

@u1ðt,xÞ

@xr

� �
, . . . ,

Xm

r ¼ 1

@

@xr
Dnr

@unðt,xÞ

@xr

� � !
ARn
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Thus, the above model (1) can be represented in the compact
form as

@uðt,xÞ

@t
¼ f rdðuðt,xÞÞ�W0uðt,xÞþW1gðuðt,xÞÞþW2hðuðt�tðtÞ,xÞÞ

¼ f rdðuðt,xÞÞþ f ðuðt,xÞ;uðt�tðtÞ,xÞÞ ð2Þ

where frd(u(t,x)) is the reaction–diffusion terms, and f ðuðt,xÞ;
uðt�tðtÞ,xÞÞ is the canonical Hopfield neural network term.

Assumption 1. The neuron activation functions gð�Þ,hð�Þ satisfy
the following Lipschitz condition:

jgðuðt,xÞÞ�gðu0ðt,xÞÞjr jGðuðt,xÞ�u0ðt,xÞÞj for any u,u0ARn

jhðuðt,xÞÞ�hðu0ðt,xÞÞjr jHðuðt,xÞ�u0ðt,xÞÞj for any u,u0ARn

where G,HARn�n are known constant matrices.

Therefore, N such neural networks (2) can be linearly coupled
into a complex network, which is described as

@uiðt,xÞ

@t
¼ f rdðuiðt,xÞÞþ f ðuiðt,xÞ;uiðt�tðtÞ,xÞÞþa

X
la i

cilðu
lðt,xÞ�uiðt,xÞÞ

ð3Þ

where the initial functions and boundary values are both defined
in (1), a40 denotes the coupling strength, cilZ0 is the coupling
strength from ul to ui.

Definition 1. This network (3) is said to be globally m-
synchronized if there exists a constant M40, T40, and a
differential function mðtÞ-þ1 as t-þ1, such that for any
initial values fjðs,xÞ, j¼ 1, . . . ,n, and t4T ,

Juiðt,xÞ�ujðt,xÞJrM
1

mðtÞ , i,j¼ 1, . . . ,N ð4Þ

where the norm J � J is defined as: for uðt,xÞ ¼ ðu1ðt,xÞ, . . . ,
unðt,xÞÞT ARn,

Juðt,xÞJ¼

Z
O

uðt,xÞT uðt,xÞdx

� �1=2

On the other hand, for the complex network model (3), if it can
be pinned to a specified trajectory uðt,xÞ by adding a single
controller, then the pinning control problem can be described by
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