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a b s t r a c t

Gaussian processes have received significant interest for statistical data analysis as a result of the good

predictive performance and attractive analytical properties. When developing a Gaussian process

regression model with a large number of covariates, the selection of the most informative variables is

desired in terms of improved interpretability and prediction accuracy. This paper proposes a Bayesian

method, implemented through the Markov chain Monte Carlo sampling, for variable selection. The

methodology presented here is applied to the chemometric calibration of near infrared spectrometers,

and enhanced predictive performance and model interpretation are achieved when compared with

benchmark regression method of partial least squares.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

Regression techniques are important data analysis tools in
many scientific and engineering disciplines where empirical
models are utilized to establish the relationship between two
sets of variables. This paper is mainly concerned with the specific
area of chemometrics, within which a major task is to calibrate
various spectrometers such that the analyte properties (e.g.
concentration) can be indirectly inferred from the measured
spectra at hundreds or thousands of wavenumbers (or wave-
lengths) [1]. Fig. 1 gives the near infrared spectra of 120 samples
of pharmaceutical tablets, where the objective is to predict the
concentration of active substance from the absorbance recorded
at 404 wavenumbers (i.e. 404 covariates). In this context, the
conventional multiple linear regression is not applicable because
of the high correlation between covariates, and the most widely
used methods are principal component regression (PCR), partial
least squares (PLS) and ridge regression [2,3]. The wide
acceptance of these linear methods is largely due to the
inherent linearity between the analyte properties and spectral
absorbance as stated in the Beer–Lambert’s law [4]. However, non-
linear calibration methods have also been proposed for practical
problems where the linearity does not hold, including neural
networks [5], support vector machine and its variants [6,7].

Recently, there has been significant interest in the Gaussian
process regression model. Initially proposed by [8], Gaussian
process was viewed as an alternative approach to neural networks
since it was demonstrated that a large class of Bayesian regression
models, based on neural networks, converged to a Gaussian
process in the limit of an infinite network [9]. Gaussian processes
can also be derived from the perspective of non-parametric
Bayesian regression [10], by directly placing Gaussian prior
distributions over the space of regression functions. Empirical
comparative studies have confirmed the outstanding performance
of Gaussian process regression with respect to other non-linear
models [11–13]. As a result, Gaussian process models have been
widely applied to various problems in statistics and engineering
[11,13–18].

In developing a Gaussian process model for regression on a
large number of covariates, it is often desirable to reduce the
dimension of the variables to alleviate the computational burden
and to improve the prediction accuracy. This is typically realized
by either projecting the original covariates onto lower-dimen-
sional space, for example using principal component analysis
(PCA) [11], or selecting a subset of these covariates. Compared
with the projection techniques, variable selection attains the
additional advantage of improved interpretability as to which
covariates are the most informative to prediction. Therefore, the
task of variable selection with respect to Gaussian process
regression is considered in this paper. This is a special case of
model selection problems, since a certain set of selected variables
corresponds to a particular model.
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In the field of chemometric calibration modelling, variable
selection strategies are typically based on a PLS regression model
whilst optimizing predictive performance by selecting/removing
the covariates. For example, iterative PLS [19] starts with the
random selection of a small number of variables, with variables
being added or removed based on the cross-validation error. An
alternative approach is uninformative variable elimination based
on an analysis of the PLS regression coefficients [20]. A third
method widely reported in the literature is that of genetic
algorithms (GAs) that were originally proposed as a family of
stochastic optimization approaches that mimic the principles of
genetics and natural selection [21]. GAs have been successfully
applied for variable selection in spectroscopic calibration [22,23].

More recently Bayesian approach to variable selection has
received considerable attention, where the main focus has been
on linear regression using Markov chain Monte Carlo (MCMC)
methods. Initially the Gibbs sampling algorithm was proposed to
sample the posterior of the indicators [24,25]. This was followed
by its extension to multiple responses [26], and its implementa-
tion using the Metropolis–Hastings sampling algorithm [27].
Dellaportas et al. [28] reviewed and compared several MCMC
methods for variable selection. Basis function based regression
models, for example splines [29–31] and wavelets [32], were
proposed with the selection of the basis function being based on
similar methodologies to those of variable selection.

The challenge with variable selection in a Gaussian process is
that the posterior distribution of the ‘‘hyper-parameters’’ (to be
defined subsequently) is not analytically available and needs to be
sampled. As a consequence the tasks of model selection and
hyper-parameter estimation are coupled, and this issue is
addressed in this paper by sampling the model and hyper-
parameters alternately. The rest of the paper is organized as
follows. A brief description of Gaussian process regression is
provided in Section 2. An overview of the Bayesian model
selection techniques is described in Section 3, where the
discussion focuses on MCMC based approaches. Section 4 presents

the MCMC method for variable selection, and the proposed
method is demonstrated through application study in Section 5.
Finally conclusions are drawn in Section 6.

2. Gaussian process regression

Consider the case where a training set of N observations is
available, fxi,yi; i¼ 1, . . . ,Ng ¼ fX,yg, where xi is a vector of p

covariates, and yi is the scalar response. A Gaussian process prior
for regression is then defined in such a way that the regression
function has a Gaussian process prior with zero mean and
covariance function Cðyi,yjÞ ¼ Cðxi,xj; hÞ. The covariance is a
function of covariates given the hyper-parameters h. An example
of such a covariance function is

Cðxi,xj;hÞ ¼ a0þa1

Xp

d ¼ 1

xidxjdþv0exp �w
Xp

d ¼ 1

ðxid�xjdÞ
2

 !
þdijs2
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where xi ¼ ðxi1, . . . ,xipÞ; dij ¼ 1 if i¼ j, otherwise it is equal to zero.
We denote h¼ ða0,a1,v0,w,s2Þ ‘‘hyper-parameters’’ to differentiate
Gaussian processes from parametric regression. In this covariance
function, the first two terms represent constant bias and linear
correlation, respectively. The exponential term is similar to the
form of a radial basis function, and defines the correlation
between the responses and nearby covariates. Finally s2 captures
random noise. By combining linear and non-linear terms in the
covariance function, the Gaussian process is capable of handling
both linear and non-linear data structures [11]. Other forms of the
covariance function are discussed in [10,33].

The training of a Gaussian process, i.e. the inference of h, can be
carried out using maximum likelihood estimation, or using
maximum a posterior estimation if prior distributions are given
for the hyper-parameters. Since the posterior distribution of h is
generally of complicated form, it is desirable to use MCMC
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Fig. 1. Near infrared spectra of 120 tablet samples.
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