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a b s t r a c t

In the present paper, an impulsive Cohen–Grossberg-type bi-directional associative memory (BAM)

neural network with distributed delays is studied. A set of new sufficient conditions are established for

the existence and global exponential stability of a unique equilibrium without strict conditions imposed

on self-regulation functions. Applying the results to some special cases, the obtained results generalize

some previously known results. A variety of methods are employed to investigate the issue. The

approaches are based on Banach fixed point theory, Brower fixed point theory, Laypunov–Kravsovskii

functional, homeomorphism theory and the matrix spectral theory. It is believed that these results are

helpful for the design and applications of the impulsive Cohen–Grossberg BAM type artificial neural

networks.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

In 1983, Cohen–Grossberg [1] proposed an artificial feedback
neural network which is called Cohen–Grossberg neural network
(CGNN). It can be described as follows:

_uiðtÞ ¼�aiðuiðtÞÞ biðuiðtÞÞ�
Xn

j ¼ 1

aijgjðujðtÞÞþ Ii

2
4

3
5, i¼ 1,2, . . . ,n:

These Cohen–Grossberg neural networks were designed to include
Hopfield-type neural networks, shunting neural networks and some
ecological systems. Cohen–Grossberg networks have their promising
potential for the tasks of classification, associative memory, parallel
computation and have great ability to solve difficult optimization
problems. Thus they have been received great attentions and they
have been extensively studied in the literature (see e.g. [1,3,6–
18,21–28,37–44,58] and the references cited therein).

On the other hand, based on the framework of Hopfield neural
networks, Kosko [2] has generalized the single-layer auto-associa-
tive Hebbian correlation to a two-layer pattern-matched hetero-
associative circuit, and proposed a class of the bi-directional
associative memory model (BAM) which has been extensively
studied with or without impulses (e.g. see [4,5,19,20,32–37,59–61]).
On basis of the bi-directional associative memory neural networks

and Cohen–Grossberg neural networks model, in [29], the authors
proposed the following Cohen–Grossberg-type BAM neural network
model:

_xiðtÞ ¼�aiðxiðtÞÞ biðxiðtÞÞ�
Xm

j ¼ 1

hijfjðljyjðt�tijÞÞ�ri

2
4

3
5, i¼ 1,2, . . . , n,

_yjðtÞ ¼�cjðyjðtÞÞ djðyjðtÞÞ�
Xn

i ¼ 1

wjigiðmixiðt�sjiÞÞ�sj

" #
, j¼ 1,2, . . . , m:

8>>>>>><
>>>>>>:
In this paper, the asymptotic stability was investigated for Cohen–
Grossberg-type BAM neural networks. As pointed out in [11], it is
preferable and desirable that the neural network not only converges
to an equilibrium point but also has a convergence rate which is as
fast as possible. It is noted that the exponential stability gives a fast
convergence rate to the equilibrium point. So it is important to
determine the exponential stability and to estimate the exponential
convergence rate. For this reason, the authors studied the exponen-
tial stability of Cohen–Grossberg-type BAM neural networks in
[11,12], respectively. Then, a few works on the stability of
continuous Cohen–Grossberg-type BAM neural networks have been
reported in [51–55].

In reality, however, many physical systems undergo abrupt
changes at certain moments due to instantaneous perturbations,
which lead to impulsive effects. Since the existence of delays
and impulses is frequently a source of instability, bifurcation
and chaos for dynamical systems, it is important to study the
delay and impulsive effects on the stability of dynamical
systems. Though many known results are done for the BAM neural
networks and Cohen–Grossberg neural networks (e.g. see
[6,7,14,15,32–34,36,41,43,51,52]), there are few works considering
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the impulsive effect on the Cohen–Grossberg-type BAM neural
networks. Recently, the authors [30,31,56,57] attempted to study
the stability of the impulsive Cohen–Grossberg-type BAM neural
networks. But the conditions are quite strict and they can be reduced
to be less conservative. Motivated by the aforementioned discussion,
in the present paper, we consider the stability characteristics of
impulsive Cohen–Grossberg-type BAM neural networks with dis-
tributed delays which modelled as follows:

where xi(t) and yj(t) are the state of the i-th neuron from the neural
field FU and the j-th neuron from the neural field FV at time t ,
respectively; fj, gi denote the activation functions of the j-th neuron
from FV and the i-th neuron from FU, respectively; ri and sj are
constants, which denote the external inputs on the i-th neuron from
FU and the j-th neuron from FV, respectively; tij and sji correspond to
the transmission delays; (tij and sji are positive constants); ai(xi(t))
and cj(yj(t)) represent amplification functions; bi(xi (t)) and dj(yj(t))
are appropriately behaved functions such that the solutions of
model (1) remain bounded; hij

0,hij
1,wji

0 and wji
1 denote the connection

strengths and lj and mi are positive constants, which correspond to
the neuronal gains associated with the neuronal activations. Here
DxiðtkÞ ¼ xiðtkþ0Þ�xiðtk�0Þ and DyjðtkÞ ¼ yjðtkþ0Þ�yjðtk�0Þ are the
impulsive jumps at moment tk and 0ot1ot2o � � � is an increasing
sequence. As usual in the theory of impulsive differential equations,
by a solution of (1) we mean zðtÞ ¼ ðx1ðtÞ, . . . ,xnðtÞ,y1ðtÞ, . . . ,
ymðtÞÞ

T ARnþm in which xið�Þ,yjð�Þ is piecewise continuous on ð0,bÞ
for some b40 such that z(tk

+) and z(tk
�) exist and zð�Þ is

differentiable on intervals of the form ðtk�1,tkÞ � ð0,bÞ and satisfies
(1); we assume that z(t) is left continuous with z(tk�0)¼z(tk) the
functions Ik,Jk : ð�Þ : R-R are assumed to be continuous. And system
(1) is supplemented with initial values given by

xiðsÞ ¼jxi
ðsÞ, sAð�1,0�, i¼ 1,2, . . .n,

yjðsÞ ¼jyj
ðsÞ, sAð�1,0�, j¼ 1,2, . . .m,

where jxi
ðsÞ and jyj

ðsÞ denote the real-valued continuous functions
defined on ð�1,0�. Obviously, the systems considered in [30,31] are
special cases of (1).
� Throughout this paper, we always use i¼ 1, . . . ,n; j¼ 1, . . . ,

m, unless otherwise stated.
For convenience, we introduce the following assumptions:
(H1) h0

ij,w
0
ji,h

1
ij,w

1
ji,ri,sjAR. The amplification functions aið�Þ and

cjð�Þ are bounded, locally Lipschitzian and 0oairaiðxÞrai, xAR,
0ocjrcjðyÞrcj, yAR.

(H2) For activation functions, there exists positive numbers
Lj

f and Li
g such that

jfjðxÞ�fjðyÞjrLf
j jx�yj, jgiðxÞ�giðyÞjrLg

i jx�yj for all x,yAR:

(H3) Assume that the kernels Hijð�Þ and Kjið�Þ are nonnegative
continuous functions defined on ½0,1Þ and there exist positive
numbers l and m such that

Z 1
0

HijðsÞds¼ 1,

Z 1
0

HijðsÞe
ls dsoþ1,

Z 1
0

HijðsÞsels dsoþ1,

Z 1
0

KjiðsÞds¼ 1,

Z 1
0

KjiðsÞe
ms dsoþ1,

Z 1
0

KjiðsÞsems dsoþ1:

The rest of this paper is organized as follows. In next section,
by using different methods, a variety of interesting sufficient
conditions are established for the existence and uniqueness of
equilibrium of (1). In Section 3, we devote ourself to studying
exponential stability of the unique equilibrium of impulsive

Cohen–Grossberg-type BAM networks with distributed delays.
Meanwhile, we shall apply our results to the famous BAM
networks with or without impulses. As you will see, our results
generalize and improve the preciously known results in the
literature. Finally, an example is presented to show the effective-
ness and feasibility of our results.

2. Existence of a unique equilibrium

In this section, some easily verifiable and new sufficient
conditions are established for the existence of a unique equilibrium
of (1). An equilibrium solution of (1) is a constant vector
z� ¼ ðx�1,x�2, . . . ,x�n,y�1,y�2, . . . ,y�mÞ

T ARnþm which satisfies the following
algebraic equation:

aiðx
�
i Þ biðx

�
i Þ�

Xm

j ¼ 1

ðh0
ijþh1

ijÞfjðljy
�
j Þ�ri

2
4

3
5¼ 0,

cjðy
�
j Þ djðy

�
j Þ�

Xn

i ¼ 1

ðw0
jiþw1

jiÞgiðmix
�
i Þ�sj

" #
¼ 0,

8>>>>>><
>>>>>>:
when the impulsive jumps are assumed to satisfy Ii(xi

n)¼0, Jj(yj
n)¼0.

From the assumption (H1), it follows that

biðx
�
i Þ ¼

Xm

j ¼ 1

ðh0
ijþh1

ijÞfjðljy
�
j Þþri,

djðy
�
j Þ ¼

Xn

i ¼ 1

ðw0
jiþw1

jiÞgiðmix
�
i Þþsj:

8>>>>><
>>>>>:

ð2Þ

For convenience, we introduce some notations. We will use
z¼ ðx1,x2, . . . ,xn,y1, . . . ,ymÞ

T ARnþm to denote a column vector, in
which the symbol (T) denotes the transpose of a vector. For matrix
D¼ ðdijÞn�n, DT denotes the transpose of D, and En denotes the
identity matrix of size n. diagð�Þ represents a diagonal matrix with
specified diagonal entries. A matrix or vector AZ0 means that all
entries of A are greater than or equal to zero. A40 can be defined
similarly. For matrices or vectors A and B, AZB (resp. A4BÞ
means that A�BZ0 (resp. A�B40Þ. We denote the spectral
radius of the matrix A by rðAÞ.

Definition 2.1. (see Berman and Plemmons [47], Lasalle [48], Horn

and Johnson [49]). A real n� n matrix A¼ ðaijÞ is said to be an
M-matrix if aijr0, i,j¼1,2,y,n, ia j, and A�1

Z0.

Lemma 2.1. (Xia [19]). Let N be a positive integer and B be a Banach

space. If the mapping FN : B-B is a contraction mapping, then F :
B-B has exactly one fixed point in B, where FN

¼FðFN�1
Þ.

_xiðtÞ ¼ �aiðxiðtÞÞ biðxiðtÞÞ�
Xm

j ¼ 1

h0
ijfjðljyjðt�tijÞÞ�

Xm

j ¼ 1

h1
ij

Z 1
0

HijðsÞfjðljyjðt�sÞÞds�ri

2
4

3
5, tatk, tZ0,

DxiðtkÞ ¼ IiðxiðtkÞÞ; i¼ 1;2; . . . ;n; k¼ 1,2, . . . ,

_yjðtÞ ¼�cjðyjðtÞÞ djðyjðtÞÞ�
Xn

i ¼ 1

w0
jigiðmixiðt�sjiÞÞ�

Xm
j ¼ 1

w1
ji

Z 1
0

KjiðsÞgiðmixiðt�sÞÞds�sj

2
4

3
5, tatk, tZ0,

DyjðtkÞ ¼ JjðyjðtkÞÞ, j¼ 1,2, . . . ,m, k¼ 1,2, . . . ,

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð1Þ
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