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a b s t r a c t

Stochastic neighbor embedding (SNE) and its variants are methods of dimensionality reduction (DR)

that involve normalized softmax similarities derived from pairwise distances. These methods try to

reproduce in the low-dimensional embedding space the similarities observed in the high-dimensional

data space. Their outstanding experimental results, compared to previous state-of-the-art methods,

originate from their capability to foil the curse of dimensionality. Previous work has shown that this

immunity stems partly from a property of shift invariance that allows appropriately normalized

softmax similarities to mitigate the phenomenon of norm concentration. This paper investigates a

complementary aspect, namely, the cost function that quantifies the mismatch between similarities

computed in the high- and low-dimensional spaces. Stochastic neighbor embedding and its variant t-

SNE rely on a single Kullback–Leibler divergence, whereas a weighted mixture of two dual KL

divergences is used in neighborhood retrieval and visualization (NeRV). We propose in this paper a

different mixture of KL divergences, which is a scaled version of the generalized Jensen–Shannon

divergence. We show experimentally that this divergence produces embeddings that better preserve

small K-ary neighborhoods, as compared to both the single KL divergence used in SNE and t-SNE and

the mixture used in NeRV. These results allow us to conclude that future improvements in similarity-

based DR will likely emerge from better definitions of the cost function.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Dimensionality reduction (DR) aims at producing faithful and
meaningful representations of high-dimensional data into a
lower-dimensional space. The general intuition that drives DR is
that close or similar data items should be represented near each
other, whereas dissimilar ones should be represented far from
each other. Through the history of DR, authors have formalized
this idea of neighborhood preservation in various ways, using
several models for the mapping or embedding of data from the
high-dimensional (HD) space to the low-dimensional (LD) one.
For instance, principal component analysis (PCA) [1–3] and
classical multidimensional scaling (MDS) [4–6] rely on linear
projections that maximize variance preservation and dot product
preservation, respectively. Nonlinear variants of metric MDS [7]
are based on (weighted) distance preservation: they build a

low-dimensional embedding that reproduce as faithfully as pos-
sible the pairwise distances measured in the data space. These
distances can be Euclidean or approximation of geodesic lengths
[8–12]. The use of similarities in DR is quite recent and emerged
with methods based on spectral optimization. Among many other
examples, Laplacian eigenmaps [13], locally linear embedding
[14], and diffusion maps [15] involve sparse matrices of simila-
rities, also called affinity matrices. In spite of a sound theoretical
framework, these methods fail to outperform older techniques in
typical visualization tasks [16–18]. A possible explanation is that
these methods can be reformulated into classical MDS achieved in
an unknown feature space [19,20]. In this case, the definition of
the similarities merely determines the implicit, arbitrary non-
linear mapping from the data space to the feature space [21,22].

Genuine similarity preservation appeared later with a techni-
que called stochastic neighbor embedding (SNE) [23]. In contrast
with spectral methods that directly convert the pairwise simila-
rities defined in the HD space into inner products, SNE matches
similarities that are computed both in the HD and LD spaces. To
some extent, the set of normalized similarities between a given
datum and all others can be seen as an a priori distribution of
neighbors, which justifies the term ‘stochastic’ in the method
name. Interest in the new paradigm developed in SNE grew
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significantly after the publication of variants such as Student
t-distributed SNE (t-SNE) [18] and NeRV [24], standing for
neighborhood retrieval and visualization. These variants led to
breakthroughs in terms of DR quality, with outstanding experi-
mental results [18,24]. Nevertheless, the reasons of this perfor-
mance leap remain partly unknown. The role played by SNE’s very
specific similarities has been investigated in [25], where it was
shown that similarities defined as softmax ratios with an appro-
priate normalization benefit from a shift invariance property. This
normalization allows the similarities to alleviate the phenomenon
of norm concentration [26], which has been identified as the main
cause of the poor performance of DR techniques based on distance
preservation [25]. In that perspective, SNE and its variants are
among the seldom nonlinear DR methods that effectively defeat
the curse of dimensionality [27,28]. Another approach is followed
in [29,30], where shift invariance is gained in a MDS variant by
maximizing the Pearson correlation between the (vectorized)
distance matrices in the HD and LD spaces, instead of the norm
of their difference.

This paper focuses on a complementary aspect of similarity-
based DR, namely, the definition of pertinent cost functions [31].
In SNE and its t-distributed variant t-SNE, the cost function is a
sum of Kullback–Leibler (KL) divergences. For each datum, a
divergence measures the mismatch between an a priori distribu-
tion of its neighbors in the HD space and the corresponding
distribution computed in the LD space. As the KL divergence is
asymmetric with respect to the two distributions it compares,
NeRV also involves the ‘dual’ KL divergence, where the two
distributions are swapped. A metaparameter controls the weight
of two dual divergences in the cost function. In an information
retrieval perspective, it has been shown that this metaparameter
allows NeRV to reach different tradeoffs between precision and
recall [24]. According to the nomenclature developed in [32],
NeRV entails a type 1 mixture of KL divergences, that is, a linear
mixture of two dual divergences. For equal mixture weights, the
resulting divergence is symmetric with respect to the two
compared distributions. In this paper, we investigate a type
2 mixture of KL divergences [32], which involves a composite
distribution and also a nonlinear mixture of two divergences. This
second type of mixture is closely related to the generalized
Jensen–Shannon divergence [33,34] and, like the type 1 mixture,
it is also symmetric when both weights are equal to one half.
Using a criterion of K-ary neighborhood preservation, we show
experimentally that the type 2 mixture outperforms both the type
1 mixture and the usual non-blended divergence. A careful
examination of the gradient of each mixture reveals some clues
to justify this better behavior.

The rest of this paper is organized as follows. Section 2
describes the normalized similarities used in SNE and its variants
to define a priori distributions of neighbors. Section 3 deals with
the two different types of divergence mixtures that measure the
mismatch between these distributions. Section 4 focuses on
optimization issues and analyzes the gradient of the considered
divergence mixtures. Section 5 presents and discusses the experi-
mental results. Finally, Section 6 draws the conclusions and
sketches some perspectives.

2. Shift-invariant softmax similarities

Let N¼ ½ni�1r irN denote a set of N points in some M-dimen-
sional space. Similarly, let X¼ ½xi�1r irN be its representation in a
P-dimensional space, with PrM. The Euclidean distances
between the ith and jth points are given by dij ¼ Jni�njJ2 and
dij ¼ Jxi�xjJ2 in the HD and LD spaces respectively. The term
similarity generally refers to a quantity that decreases as the

distance grows. In SNE, the similarities associated with dij and dij

are defined for ia j by

sij ¼
expð�gijÞP

k,ka iexpð�gikÞ
and sij ¼

expð�gijÞP
k,ka iexpð�gikÞ

, ð1Þ

where gij ¼ gðdij=liÞ and gij ¼ gðdijÞ. Functions g and g are both
non-negative with a non-negative derivative. Parameter li is a
bandwidth that can be seen as a soft neighborhood radius. By
convention, sij ¼ sij ¼ 0 if i¼ j.

In SNE and NeRV, the similarities are Gaussian, with g and g

being defined as

gðuÞ ¼ gðuÞ ¼ u2=2: ð2Þ

In t-SNE, the similarities in the LD space are defined in a different
way than in the HD space, by using an unnormalized probability
mass function of a Student t distribution with m degrees of
freedom2

sij ¼
ð1þs2

ij=mÞ�ðmþ1Þ=2P
kð1þs2

ij=mÞ�ðmþ1Þ=2
: ð3Þ

This amounts to opting for

gðuÞ ¼
mþ1

2
lnð1þu2=mÞ: ð4Þ

in (1). The heavier tail of the Student t function, as compared to
the Gaussian, induces an exponential transformation between the
HD and LD distances [35]. The longer the distance is in the HD
space, the stronger it is stretched in the LD space.

An important feature of similarities defined as softmax expo-
nential ratios such as above is their normalization, that is,P

jsij ¼
P

jsij ¼ 1. Combined with positivity, it allows the simila-
rities sij and sij to be interpreted as a priori probabilities for nj and
xj to be neighbors of ni and xi, respectively. But more importantly,
normalization implies scale invariance with respect to expð�gijÞ in
sij, which in turn translates into shift invariance with respect to
gðdij=liÞ ¼ d2

ij=ð2l
2
i Þ [25]. Since null distances have a trivial dis-

tribution that differs from that of non-zero distances, they are
excluded from the sum in the normalization denominators in (1).
As a direct result, the shift applicable to d2

ij can range from
�minj,ja id

2
ij to 1. The lower end of this interval ensures that

the shifted distances remain positive. A negative shift close to this
lower bound is particularly interesting to mitigate the phenom-
enon of norm concentration [26]. One manifestation of this
phenomenon is the following: for a finite sample of points
N,minj,ja iJni�njJ grows faster with M than maxjJni�njJ. In other
words, the relative variance of a discrete distribution of Euclidean
distances (namely, its variance divided by the square of its mean)
vanishes when M tends to 1. The changing shape of distance
distributions, depending on the dimensionality, partly explains
the failure of DR methods based on distance preservation. The
distances in LD spaces are always and systematically ‘too scat-
tered’ to match those observed in HD spaces. Invariance to shifts
in similarities circumvents this problem [25].

3. Divergences to measure the similarity mismatch

Thanks to positivity and normalization, vectors ri ¼ ½sij�1r jrN

and si ¼ ½sij�1r jrN can be seen as discrete probability

2 The exact definition of sij in [18] also entails a slightly different normal-

ization of the similarity, with a sum in the denominator that runs over both

indices instead of the second one only. In practice, doing so simplifies the gradient

of t-SNE but has no significant effect on the method results. Our definitions of sij

and sij in (1) reproduce those of SNE in [23] and have the advantage of

instantiating twice the very same template.
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