Neurocomputing 72 (2009) 3541-3555

journal homepage: www.elsevier.com/locate/neucom

Contents lists available at ScienceDirect

Neurocomputing

Parallel multiobjective memetic RBFNNs design and feature selection for
function approximation problems

A. Guillén®*, H. Pomares®, ]. Gonzalez®, I. Rojas®, O. Valenzuela®, B. Prieto®

2 Department of Informatics, University of Jaen, Spain

P Department of Computer Technology and Architecture, University of Granada, Spain

ARTICLE INFO

ABSTRACT

Available online 23 June 2009

Keywords:

Parallel genetic algorithms
RBF

Neural networks

Function approximation
RBFNN

MPI

The design of radial basis function neural networks (RBFNNSs) still remains as a difficult task when they
are applied to classification or to regression problems. The difficulty arises when the parameters that
define an RBFNN have to be set, these are: the number of RBFs, the position of their centers and the
length of their radii. Another issue that has to be faced when applying these models to real world
applications is to select the variables that the RBFNN will use as inputs. The literature presents several
methodologies to perform these two tasks separately, however, due to the intrinsic parallelism of the
genetic algorithms, a parallel implementation will allow the algorithm proposed in this paper to evolve
solutions for both problems at the same time. The parallelization of the algorithm not only consists in
the evolution of the two problems but in the specialization of the crossover and mutation operators in
order to evolve the different elements to be optimized when designing RBFNNs. The subjacent genetic
algorithm is the non-sorting dominated genetic algorithm II (NSGA-II) that helps to keep a balance
between the size of the network and its approximation accuracy in order to avoid overfitted networks.
Another of the novelties of the proposed algorithm is the incorporation of local search algorithms in
three stages of the algorithm: initialization of the population, evolution of the individuals and final
optimization of the Pareto front. The initialization of the individuals is performed hybridizing clustering
techniques with the mutual information (MI) theory to select the input variables. As the experiments
will show, the synergy of the different paradigms and techniques combined by the presented algorithm
allow to obtain very accurate models using the most significant input variables.

© 2009 Published by Elsevier B.V.

1. Introduction

The real problem that arises when it is desired to approximate
a function using an RBFNN is how to design the RBFNN. The

The problem of function approximation, also known as non-
linear regression, has been successfully tackled using radial
basis function neural networks (RBFNNs) [32]. Formally, the
functional approximation problem can be formulated as given a
set of observations {(X,:yx):k =1,...,n} with y, = F(X;) € R and
X, e RY, it is desired to obtain a function # so y,~.% (%;). Once
this function is learned, it will be possible to generate new
outputs from input data that were not specified in the original
data set.

The reason to use RBFNNs [8] is because they have the
capability of approximating any continuous function defined on a
compact set. An RBFNN is a two-layer, fully connected network in
which each neuron implements a Gaussian function. These kind
of functions are very appropriate for function approximation
because they are continuous, differentiable, provide a softer
output, and improve the interpolation capabilities.

* Corresponding author.
E-mail address: aguillen@atc.ugr.es (A. Guillén).

0925-2312/$ - see front matter © 2009 Published by Elsevier B.V.
doi:10.1016/j.neucom.2008.12.037

parameters to be set to create an RBFNN are: the number and the
position of the centers of the RBFs and their radii. The weights of
the output layer can be calculated optimally solving a linear
equation system. The solution space for the problem of initializing
these variables is infinite since they are real values, on top of this,
the risk of stalling in local minima is quite high.

The literature presents a wide variety of algorithms which are
based on genetic algorithms (GAs) [2,21,47] and local search or
descent gradient methods [26]. These techniques have shown a
good performance, however in [36], memetic algorithms (MAs)
were presented as evolutionary algorithms that hybridize the
global optimization characteristics of GAs with local search
techniques that allowed the GAs to perform a more deep
exploitation of the solutions.

The two objectives of designing an RBFNN with the maximum
generalization capabilities and the minimum approximation error
with the training data is translated into defining the topology
(number of RBFs) of the network. The more neurons are in the
network, the smaller the approximation error will be although the
more the generalization capabilities will be decreased. This fact


www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2008.12.037
mailto:aguillen@atc.ugr.es
mailto:aguillen@atc.ugr.es

3542 A. Guillén et al. / Neurocomputing 72 (2009) 3541-3555

defines our task as a multiobjective problem which can be solved
applying multiobjective GAs (MOGAs).

Another related issue is which variables the RBFNNs should
consider. In real world applications there are many variables that
can be useless. Having a number of irrelevant or redundant input
variables can lead to overfitting, higher computational cost and to
a poor generalization of the model. The algorithm presented in
this paper evolves the input variables for the RBFNNs after a
initialization based in the mutual information (MI) theory.

The algorithm presented in this paper will combine the
techniques of local search, multiobjective optimization and mutual
information system combined with pure variable selection through
genetic algorithms to design an RBFNN that approximates a
function with accuracy and generalization capabilities.

1.1. Description of RBENN

Several types of artificial neural networks (ANNs) can be
defined by modifying the activation function or the number of
layers. In [8] Broomhead and Lowe introduced the radial basis
function neural network model. This kind of ANN has been
successfully applied to many problems related with non-linear
regression and classification. Among the advantages of RBFNN
over other types of networks, it can be noticed that the fast
learning capabilities, the better interpretability of the model
generated and ease of VLSI implementation [46]. An RBFNN is a
two-layer, fully connected network in which each neuron
implements a Gaussian function as follows:

2 32
¢®am=u%—%;i)i=nmm, (1
i
where X is an input vector, ¢; is the center and r; is the radius of
the i-th RBF.

The output layer implements a weighted sum of all the outputs
from the hidden layer:

m
FECRQ) =) pFE:Ci,1)Q; )
i=1

where Q; are the output weights, which modulates the contribu-
tion of a hidden layer to the corresponding output unit and can be
obtained optimally by solving a linear equation system.

1.2. Description of GA

Genetic algorithms were developed by Holland [29] in the
1970s and they are based on the evolutionary ideas of natural
selection and genetics. The GAs generate a population starting
from a previous one by crossing the individuals of the previous
generation. This procedure allows the algorithm to exploit the
historical information kept in the chromosomes of each individual
in the population. Thus, if two good individuals are crossed, it is
quite probable that the resulting offsprings improve the solution
of the problem to be solved. In classical GAs, each individual in the
population encodes a solution to the problem using a chromo-
some composed by a sequence of genes whose values are 0 or 1.

The general scheme that classical GAs follow is:

randomly initialize population(t)
determine fitness of population(t)
do
select parents from population(t)
perform crossover on parents to generate population(t+1)
mutate population(t+1)
compute fitness of population(t+1)
while termination criterion

2. A parallel evolutionary feature selector and RBFNN designer
for function approximation: pEFSFA

This section describes the proposed algorithm that optimizes
the inputs, the structure and the parameters of RBFNNs for
function approximation problems. This algorithm implements and
combines several paradigms such as MAs, MOGAs and PGAs. The
synergy of these techniques results in a robust algorithm which is
able to design proper RBFNNs.

2.1. Representing RBFNNs in the individuals

As it was shown in the Introduction, to design an RBFNN it is
needed to specify: (1) the variables that the RBFNN will receive as
inputs, (2) the number of RBFs, (3) the position of the centers of
the RBFs, (4) the length of the radii and (5) the weights for the
output layer.

An individual will encode, as a binary vector, the input
variables that will take of each input vector, then, the position
of the centers in that input variable space and the radii are stored
as real numbers. The binary encoding was chosen because of its
simplicity and its discrete solution space.

2.2. Initial population

The infinite solution space for the problem of setting the
centers and the radii and the large (although it depends on the
problem) solution space for the problem of selecting the input
variables, makes very important the initialization of the popula-
tion in areas of the solution space where the solutions can be
considered adequate. Therefore, this subsection deals with the
method used to initialize the individuals.

2.2.1. Mutual information systems

Since the individuals represent the set of input variables using
a binary vector, the number of possible solutions is 2¢. At first, this
might not seem too high but, to evaluate the goodness of each one
of those possible solutions, infinite RBFNNs could be designed.
Therefore, a preprocessing of these input variables that indicates
which variables are the most significant for the output becomes
necessary. For this purpose, the mutual information (also called
cross-entropy) concept will be employed. Let X! = {X’L} with [ e
1,...,d (i.e. X! is the I-th input variable) and Y = {y,} with {k =
1,...,n} then, the mutual information between X! and Y can be
defined as the amount of information that X! provide about Y, and
can be expressed as

IX',Y) = H(Y) — H(Y|XY, 3)

where H(Y) is the entropy of variable Y that measures the
uncertainty on Y. In the continuous case and according to the
formulation of Shannon, it is defined as

Hm=—/MMMMM®, @

where py(y) is the marginal density function, that can be defined
using the joint probability density function (PDF) iy, of X! and Y
as

Hy(y) = /ﬂx',y(X,J/)dX 5)

and H(Y|X!) is the conditional entropy that measures the
uncertainty of Y, given that X' is known. H(Y|X)) is defined in
the continuous case as

= [ 160 [ ! = wloguy X! = x)dy dx. ®)



Download English Version:

https://daneshyari.com/en/article/410443

Download Persian Version:

https://daneshyari.com/article/410443

Daneshyari.com


https://daneshyari.com/en/article/410443
https://daneshyari.com/article/410443
https://daneshyari.com

