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a b s t r a c t

The analysis and classification of data is a common task in multiple fields of experimental research such

as bioinformatics, medicine, satellite remote sensing or chemometrics leading to new challenges for an

appropriate analysis. For this purpose different machine learning methods have been proposed. These

methods usually do not provide information about the reliability of the classification. This, however, is a

common requirement in, e.g. medicine and biology. In this line the present contribution offers an

approach to enhance classifiers with reliability estimates in the context of prototype vector

quantization. This extension can also be used to optimize precision or recall of the classifier system

and to determine items which are not classifiable. This can lead to significantly improved classification

results. The method is exemplarily presented on satellite remote spectral data but is applicable to a

wider range of data sets.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

The generation of classification models is a common task in
multiple fields of experimental research such as bioinformatics,
medicine, satellite remote sensing or chemometrics [23,25].
Reliability estimation of the obtained classification models is
frequently required. In traditional statistics this information is
usually provided by significance levels, whereas for machine
learning models such estimators are rare. Recently a learning
theoretical approach for this problem was proposed by [33], called
conformal prediction. We adapt this model for utilization of
prototype-based classifiers like learning vector quantization
(LVQ) namely supervised relevance neural gas (SRNG) [32]. This
model classifies each sample prototype-based and additionally
offers a level of its classification reliability.

We demonstrate the capabilities of this method for classifica-
tion of satellite remote sensing spectral data. For this type of
data true color images allow a visual control of classifica-
tion accuracy [8]. In this specific application another aspect is
given by the functional character of the data which requires
an adequate handling [19,23,29]. In particular we favor the usage
of functional distances for similarity determination instead of
standard Euclidean (EUC) metric.

The paper is organized as follows. First we briefly introduce the
main ingredients for our model. We start with a short review of
the supervised relevance neural gas for prototype-based classifi-
cation [32] and demonstrate how this approach can deal with
different types of metrics including a functional metric. Thereafter
the method of conformal prediction [33] is discussed in the light
of prototype-based classifiers. It is shown how a thresholding
approach can be employed in the analysis of functional spectral
data combining the two measures of confidence and credibility as
derived from conformal predictions. The experimental settings of
our approach are defined. In the experimental section we apply
our framework on data obtained from remote satellite imaging.
The data are analyzed in detail and some new findings are made
which have not been reported so far. The paper is closed by a
summary and a discussion of open points and research directions.

2. Material and methods

2.1. Supervised neural gas for functional data

Supervised neural gas (SNG) [10] is considered as a represen-
tative for prototype-based classification approaches as introduced
by Kohonen [15]. Different prototype classifiers have been
proposed so far [10,15,21] as improvements of the original
approach. The SNG combines the idea of neighborhood coopera-
tiveness during learning from the unsupervised neural gas (NG)
algorithm introduced in [18] with the supervised generalized
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learning vector quantizer (GLVQ) as given in [21]. Subsequently
we give the basic notations and some remarks to the integration
of alternative metrics into supervised neural gas. Details on SNG
including convergence proofs can be found in [10].

Let us first clarify some notations: Let cv 2L be the label of
input v, L a set of labels (classes) with L ¼ NL. Let VDRDV be a
finite set of inputs v: LVQ uses a fixed number of prototypes
(weight vectors, codebook vectors) for each class. Let W ¼ fwrg be
the set of all codebook vectors and cr be the class label of wr.
Furthermore, let Wc ¼ fwrjcr ¼ cg be the subset of prototypes
assigned to class c 2L and Wc is the cardinality of Wc.

In vector quantization a stimulus vector v 2 V is mapped onto
that neuron s 2 A the pointer ws of which is closest to the
presented stimulus vector v,

Ck
V-A : v8sðvÞ ¼ argmin

r2A
dkðv;wrÞ ð1Þ

dkðv;wÞ is an arbitrary differentiable similarity1 measure, which
may depend on a parameter vector k. For the moment we take k as
fixed. The neuron sðvÞ is called winner or best matching unit. The
subset of the input space

Ok
r ¼ fv 2 V : r ¼ CV-AðvÞg ð2Þ

which is mapped to a particular neuron r according to (1), forms
the (masked) receptive field of that neuron forming a Voronoi
tessellation. If the class information of the weight vector is used,
the boundaries @Ok

r generate the decision boundaries for classes.
A training algorithm should adapt the prototypes such that
for each class c 2L, the corresponding codebook vectors Wc

represent the class as accurately as possible. This means that the
set of points in any given class Vc ¼ fv 2 V jcv ¼ cg, and the union
Uc ¼

S
rjwr2Wc

Or of receptive fields of the corresponding proto-

types should differ as little as possible.
We suppose to have m data vectors vi. As pointed out in [10],

the neighborhood learning for a given input vi with label c is
applied to the subset Wc . The respective cost function is

CostSNGðgÞ ¼
Xm

i¼1

X
rjwr2Wci

hgðr;vi;Wci
Þ � f ðmkðr; vÞÞ

Cðg;Kci
Þ

ð3Þ

with f ðxÞ ¼ ð1þ expð�xÞÞ�1;hgðr; v;WÞ ¼ expð�krðv;WÞ=gÞ and
mkðr; vÞ ¼ ðd

k
r � dk

r� Þ=ðd
k
r þ dk

r� Þ whereby dk
r� is defined as the

squared distance to the best matching prototype but labeled with
cr�acv, say wr� and dk

r ¼ dkðv;wrÞ. For a detailed formal analysis
of SNG we refer to [10].

2.1.1. Incorporation of a functional metric to SNG

As pointed out before, the similarity measure dkðv;wÞ is only
required to be differentiable with respect to k and w. The triangle
inequality has not to be fulfilled necessarily. This leads to a great
freedom in the choice of suitable measures and allows the usage
of non-standard metrics in a natural way. We now review a
functional metric as given in [16]. This type of metric is especially
suited in case of functional data because it takes consecutive
points into account which is a natural property in case of
functional data. In [16] a successful application of this type
of metric was shown using the well-known tecator data provided
in [2].

The corresponding derivations can be plugged into the above
equations leading to SNG with a functional metric, whereby the
data are functions represented by vectors and, hence, the vector

dimensions are spatially correlated. A similar situation can be
observed for satellite spectra as demonstrated in [26].

Common vector processing does not take the spatial order of
the coordinates into account. As a consequence, the functional
aspect of spectral data is lost. For proteom spectra the order of
signal features (peaks) is due to the nature of the underlying
biological samples and the measurement procedure. The masses
of measured chemical compounds are given ascending and peaks
encoding chemical structures with a higher mass follows chemical
structures with lower masses. In addition, multiple peaks with
different masses may encode parts of the same chemical structure
and hence are correlated.

Lee proposed a distance measure taking the functional
structure into account by involving the previous and next values
of xi in the i-th term of the sum, instead of xi alone. Assuming a
constant sampling period t, the proposed norm is

LFCC
p ðvÞ ¼

XD

k¼1

ðAkðvÞ þ BkðvÞÞ
p
Þ

1=p
0
@ ð4Þ

with

AkðvÞ ¼

t
2
jvkj if 0pvkvk�1

t
2

v2
k

jvkj þ jvk�1j
if 04vkvk�1

8>><
>>:

ð5Þ

BkðvÞ ¼

t
2
jvkj if 0pvkvkþ1

t
2

v2
k

jvkj þ jvkþ1j
if 04vkvkþ1

8>><
>>:

ð6Þ

are, respectively, of the triangles on the left and right sides of xi.
Just as for Lp, the value of p is assumed to be a positive integer. At
the left and right ends of the sequence, x0 and xD are assumed to
be equal to zero. The derivatives for the functional metric taking
p ¼ 2 are given in [16]. Now we consider the scaled functional
norm where each dimension vi is scaled by a parameter li40 li 2

ð0;1� and
P

i li ¼ 1. Then the scaled functional norm is

LFCC
p ðlvÞ ¼

XD

k¼1

ðAkðlvÞ þ BkðlvÞÞpÞ

1=p
0
@ ð7Þ

with

AkðlvÞ ¼

t
2
lkjvkj if0pvkvk�1

t
2

l2
kv2

k

lk vk

�� ��þ lk�1 vk�1

�� �� else

8>>><
>>>:

ð8Þ

BkðlvÞ ¼

t
2
lkjvkj if0pvkvkþ1

t
2

l2
k v2

k

lk vk

�� ��þ lkþ1 vkþ1

�� �� else

8>>><
>>>:

ð9Þ

The corresponding derivations can be found in [26]. Using this
parametrization one can emphasize/neglect different parts of the
function for classification. This distance measure can be put into
SNG as shown above and has been applied subsequently in the
analysis of the spectra. SNG with a parametrized metric is
subsequently referred as SRNG. The functional metric will be just
referred as FUNC and will be always used with metric adaptation
if not stated otherwise.

2.2. Conformal prediction—reliability estimation

In the analysis of spectral data the determination of a classifier
is a difficult task. The data are functional and in general high

1 A similarity measure is a non-negative real-valued function, which, in

contrast to a distance measure, does not necessarily fulfill the triangle inequality

and the symmetry property.
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