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In this paper, the stability analysis problem for a new class of discrete-time neural networks with

randomly discrete and distributed time-varying delays has been investigated. Compared with the

previous work, the distributed delay is assumed to be time-varying. Moreover, the effects of both

variation range and probability distribution of mixed time-delays are taken into consideration in the

proposed approach. The distributed time-varying delays and coupling term in complex networks are

considered by introducing two Bernoulli stochastic variables. By using some novel analysis techniques

and Lyapunov–Krasovskii function, some delay-distribution-dependent conditions are derived to ensure

that the discrete-time complex network with randomly coupling term and distributed time-varying

delay is synchronized in mean square. A numerical example is provided to demonstrate the

effectiveness and the applicability of the proposed method.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

In the past decade, neural networks (NNs) have attracted
considerable attention because of their potential applications in
engineering applications, such as associative memory, pattern
recognition, optimization and signal processing [1–3]. As is
known to all, stability is one of the preconditions in the design.
For example, if a neural network is employed to solve some
optimization problems, it is highly desirable for the NNs to have a
unique globally stable equilibrium. Therefore, stability analysis of
NNs is a very important issue and has been well studied in [4–20].
In particular, the stability of discrete-time neural networks
(DNNs) have been studied in [12–20], since DNNs play a more
important role than their continuous-time counterparts in today’s
digital life [21–23]. On the other hand, it has now been well
recognized that stochastic disturbances are mostly inevitable
owing to thermal noise in electronic implementations. It has also
been revealed that certain stochastic inputs could make a neural
network unstable. Therefore, the stability problem of stochastic

DNNs becomes more significant from the practical point of view,
see, e.g. [24–26].

Recently, the dynamics analysis problem for DNNs with or
without time delays has received much research interest, see, e.g.
[13,16,18,19] and references therein. On the other hand, due to the
presence of an amount of parallel pathways of a variety of axon
sizes and lengths, a neural network usually has a spatial nature.
Therefore, it is necessary to take continuously distributed delays
into account for modeling a realistic neural network such that the
distant past has less influence compared with the recent behavior
of the state. Note that the dynamics analysis problem of
distributed delay in continuous-time neural networks has been
well studied in [8,24–26]. Very recently, Liu and Wang introduced
the infinite distributed delay and distributed delay in the form of
constant delay into the DNNs [17,18]. However, in practice, time-
varying delay in DNNs occurs commonly in most designs.
Therefore, the study of DNNs with distributed time-varying delay
is more important than those with constant delays.

In the existing references for DNNs, the deterministic time-
delay case was well studied, see, e.g. [16,18,27]. Actually, the time
delay in some NNs exist in a stochastic fashion [28–30]. For
example, to control and propagate the stochastic signals, a
probabilistic universal learning networks (PULN) was proposed
in [30]. In [30], if some values of the time delay are very large but
the probabilities of the delay taking such large values are very
small, then it may result in a more conservative result if only the
information of variation range of the time delay is considered. For
this case, if we derive the criteria by only using the variation range
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of time delay, the results could lead to more conservative. In
[19,20], the stochastic discrete time-delay was introduced into
DNNs and some so-called delay-distribution-dependent criteria
have been derived. However, to the best of authors’ knowledge, so
far, the stability analysis of DNNs with distributed time-varying
delay has received little attention in the literature, not to mention
that stochastic distributed delay is also involved.

Motivated by the above discussions, the aim of this paper is to
investigate the stability of DNNs with randomly mixed time-
varying delays in mean square. By using two stochastic variables
which satisfy Bernoulli random binary distribution, we propose a
new model of DNNs composed of stochastic mixed time-delays.
The effects of both variation range and probability distribution of
the discrete and distributed time-varying delays is considered to
derive the stability criteria. The proposed results will result in less
conservativeness and takes some well-studied models as special
cases. The stochastic disturbances are described in terms of a
Brownian motion. Via a Lyapunov–Krasovskii functional and some
new analysis techniques, some sufficient conditions for global
stability in mean square are established for the addressed
stochastic DNNs with randomly mixed time-varying delays. An
illustrative example is given to show the effectiveness of the
proposed results.

2. Model formulation and preliminaries

Notations: Throughout this paper, Rn and Rn�m denote,
respectively, the n-dimensional Euclidean space and the set of
all real matrices. The superscript ‘T’ denotes matrix transposition
and the notation X � Y(respectively, X4Y) where X and Y are
symmetric matrices, means that X � Y is positive semi-definite
(respectively, positive definite). In symmetric block matrices, the
symbol � is used as an ellipsis for terms induced by symmetry. j � j
stands for the Euclidean vector norm in Rn. Z�0denotes the the set
including zero and positive integers. Efxg and Efxjyg denote the
expectation of x and the expectation of x conditional on y. ½a : b�

denotes a set involving all integers between a and b. ðO;F;PÞ is a
probability space, where O is the sample space, F is the s-algebra
of subsets of the sample space and P is the probability measure
on F.

Consider the following n-neuron DNNs with mixed time-
varying delays:

uðkþ 1Þ ¼ CuðkÞ þ Af̃ ðuðkÞÞ þ Bg̃ðuðk� tðkÞÞÞ þ D
X�1

i¼�dðkÞ

h̃ðuðkþ iÞÞ þ J̃ ,

(1)

where uðkÞ ¼ ðu1ðkÞ;u2ðkÞ; . . . ;unðkÞÞ
T is the neural state vector, C ¼

diagfc1; c2; . . . ; cng is the state feedback coefficient matrix; the n�

n matrices A ¼ ½aij�n�n, B ¼ ½bij�n�n and D ¼ ½dij�n�n are, respectively,
the connection weight matrix, the discretely delayed connection
weight matrix and distributively delayed connection weight
matrix; J̃ ¼ ½J̃1; J̃2; . . . ; J̃n�

T is the exogenous input; tðkÞ and
dðkÞ denote the discrete and distributed time-varying delays,
respectively. f̃ ðuðkÞÞ ¼ ½f̃ 1ðu1ðkÞÞ; f̃ 2ðu2ðkÞÞ; . . . ; f̃ nðunðkÞÞ�

T , g̃ðuðkÞÞ ¼

½g̃1ðu1ðkÞÞ; g̃2ðu2ðkÞÞ; . . . ; g̃nðunðkÞÞ�
T and h̃ðuðkÞÞ ¼ ½h̃1ðu1ðkÞÞ; h̃2ðu2ðkÞÞ;

. . . ; h̃nðunðkÞÞ�
T denote the activation functions.

Remark 1. Note that the distributed delay in continuous time
systems has received much attention in [8,24,26]. Very recently,
Liu and Wang introduced the distributed delay in discrete-time
systems [17,18,27]. However, the distributed delay is considered
in the case of constant delay or infinite distributed delay. Due to
the time-varying delay takes the usual time delay as special cases,
in this paper, we aim to investigate stability analysis of
neural networks with the time-varying distributed delay. In the

following, we use some novel techniques to deal with the stochastic
interval time-varying distributed delay in discrete-time systems.

Assumption 1. For i 2 f1;2; . . . ;ng, the neuron activation functions
in (1) satisfy

H1 �
f̃ iðxÞ � f̃ iðyÞ

x� y
� H2,

L1 �
g̃iðxÞ � g̃iðyÞ

x� y
� L2,

M1 �
h̃iðxÞ � h̃iðyÞ

x� y
� M2; 8x; y 2 R

n; xay,

i ¼ 1;2; . . . ;n, (2)

where H1;H2; L1; L2;M1;M2 are constants.

Remark 2. This assumption was first introduced in Refs. [8,11]
and has been subsequently studied in many recent NN papers
(see, e.g. [16,19,25,27]). Obviously, the conditions in Assumption 1
are more general than the usual sigmoid functions and the
recently commonly used Lipschitz conditions, see, e.g. [5,14,26].
Such a description is very precise in quantifying the lower and
upper bounds of the activation functions, therefore very helpful
for employing LMI-based method to reduce the possible con-
servatism.

Under Assumption 1, let u� be the equilibrium point of (1). We
shift the intended equilibrium u� to the origin by letting
xðkÞ ¼ uðkÞ � u�. Then, system (1) with stochastic disturbances
can be written as

xðkþ 1Þ ¼ CxðkÞ þ Af ðxðkÞÞ þ Bgðxðk� tðkÞÞÞ þ D
X�1

i¼�dðkÞ

hðxðkþ iÞÞ

þ sðk; xðkÞÞoðkÞ, (3)

where xðkÞ ¼ ½x1ðkÞ; x2ðkÞ; . . . ; xnðkÞ�
T is the state vector of the

transformed system, and the transformed neuron activation
functions are f ðxðkÞÞ ¼ f̃ ðuðkÞÞ � f̃ ðu�Þ, gðxðkÞÞ ¼ g̃ðuðkÞÞ � g̃ðu�Þ and
hðxðkÞÞ ¼ h̃ðuðkÞÞ � h̃ðu�Þ. sð�; �Þ : R�Rn

! Rn is the noise intensity
function vector; oðkÞ is a scalar Wiener process on a probability
space ðO;F;PÞ with

EfoðkÞg ¼ 0; Efo2ðkÞg ¼ 1; EfoðiÞoðjÞg ¼ 0 ðiajÞ. (4)

It can be verified from (2) and (3) that

H1 �
f iðxÞ � f iðyÞ

x� y
� H2,

L1 �
giðxÞ � giðyÞ

x� y
� L2,

M1 �
hiðxÞ � hiðyÞ

x� y
� M2; 8x; y 2 R

n; xay,

f ið0Þ ¼ gið0Þ ¼ hið0Þ ¼ 0; i ¼ 1;2; . . . ;n, (5)

where H1;H2; L1; L2;M1;M2 are constants.

Assumption 2. The noise intensity function vector sð�; �Þ : R�
Rn
! Rn satisfies the Lipschitz condition, i.e. there exist a

constant g such that the following inequality:

sðk; xðkÞÞTsðk; xðkÞÞ � gxT ðkÞxðkÞ. (6)

Assumption 3. The discrete time-varying delay tðkÞ and distrib-
uted time-varying delay dðkÞ are bounded, namely
0otm � tðkÞ � tM , 0odm � dðkÞ � dM , and its probability distribu-
tion can be observed, i.e. assume that tðkÞ takes values in ½tm : t0�

or ðt0 : tM� and ProbftðkÞ 2 ½tm : t0�g ¼ r0, where t0; tm; tM are
integers satisfying tm � t0otM , and 0 � r0 � 1. Similarly, dðkÞ

takes values in ½dm : d0� or ðd0 : dM � and ProbfdðkÞ 2 ½dm : d0�g ¼ x0,
where d0; dm;dM are integers also satisfying dm � d0odM , and
0 � x0 � 1.
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