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a b s t r a c t

This paper addresses the approximation problem of functions affected by unknown periodically time-

varying disturbances. By combining Fourier series expansion into multilayer neural network or radial

basis function neural network, we successfully construct two kinds of novel approximators, and prove

that over a compact set, the new approximators can approximate a continuously and periodically

disturbed function to arbitrary accuracy. Then, we apply the proposed approximators to disturbance

rejection in the first-order nonlinear control systems with periodically time-varying disturbances, but it

is straightforward to extend the proposed design methods to higher-order systems by using adaptive

backstepping technique. A simulation example is provided to illustrate the effectiveness of control

schemes designed in this paper.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

Recent years have witnessed a rapid development of function
approximation theory and their successful applications. As far as
the theoretical researches are concerned, lots of approximators
have been developed in past years [1–6]. For instance, neural
networks (NNs) including radial basis function neural network
(RBFNN) [1], multilayer neural network (MNN) [2], and high-order
neural network (HONN) [3], etc., have been proven to have good
capabilities in function approximation. In other words, NNs can
approximate a continuous function arbitrarily closely over a
compact set, which is well known as the NN universal approx-
imation property. In parallel with NNs, the universal approxima-
tion property of fuzzy logic system (FLS) [4] and wavelet network
[5] is also well known. One of the drawbacks of traditional
approximators is that their approximation property is only for
continuous functions. To encounter this drawback, by combining
jump functions into NNs, a new NN approximator is proposed to
approximate piecewise continuous functions [6]. From the view-
point of applications, within the framework of system control,
various kinds of existing approximators have been successfully
applied to solving the problem of identification and control for
uncertain nonlinear systems, see [7–15,28], to name just a few.

However, all existing approximators are only used to approximate
unknown functions without unknown time-varying disturbances.

It is well known that time-varying disturbances often exist in
many practical physical systems. Their existence can lead to some
bad effects on system identification and control. For example,
disturbances can destroy the universal approximation property of
approximators or deteriorate the control system performances. In
general, it is extremely difficult to construct a suitable function
approximator to model the disturbed functions to any accuracy.
A more realistic way is first to classify the time-varying
disturbances into subclasses, e.g., periodic vs. non-periodic, and
then look for an appropriate suitable approach for each subclass.
In fact, many works have been done to control systems with
periodically time-varying disturbances (also called time-varying
parameters) [16–22]. However, in these works, disturbances are
assumed to be added to (or multiplied by) system equalities. To
the best of authors’ knowledge, up to now no works have been
done to investigate the systems in which the periodic distur-
bances, as partial variables, appear in system functions, especially
in unknown system functions.

Motivated by the above discussion, in this paper we will
consider the approximation problem of nonlinear functions
affected by continuously and periodically time-varying distur-
bance. I.e., f ðw; yðtÞÞ, where w is a measured signal and yðtÞ is an
unmeasured disturbance. Main design difficulty is that the
unmeasured time-varying disturbance nonlinearly appears in
system structure. As far as we know, no works have been reported
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to solve this difficulty in the literature at present stage.
Fortunately, it is shown in this paper that the above difficulty
can be overcome. The main contributions of this paper
include:

(1) From the viewpoint of disturbance rejection, for the first time,
we combine Fourier series expansion (FSE) into NNs to
construct two kinds of new approximators to reject the
unknown periodically time-varying disturbances in unknown
functions. One is constructed by combining FSE into MNN, and
the other is established by combining FSE into RBFNN. Then,
we prove their universal approximation property. Compared
with traditional NNs, the main advantage of new approxima-
tors is their disturbance rejection capability due to the
introduction of FSE.

(2) From the viewpoint of practical applications, we further apply
two kinds of approximators to the disturbance rejection in
adaptive control systems. Concretely speaking, we employ the
proposed approximators to solve the adaptive tracking control
problem for uncertain systems with periodically time-varying
and unknown disturbances, which further demonstrates the
approximation capability and disturbance rejection capability
of the proposed approximators.

The rest of this paper is organized as follows. In Section 2, we
construct two kinds of approximators for periodically disturbed
functions and prove their approximation capability. In Section 3,
we apply the new approximators to the disturbance rejection in
adaptive control system with periodic disturbances, and give the
stability analysis. In Section 4, a simulation example is provided to
illustrate the effectiveness of the proposed control schemes. In
Section 5, we conclude the work of this paper.

Throughout this paper, k � k denote Euclidean norm of a vector
or its induced matrix norm; trf�g represents the trace operator;
kBkF denotes the Frobenius norm, i.e., for a given matrix
B ¼ ½bi;j� 2 Rm�n, kBkF ¼ trfBTBg; jAj1 ¼

Pm
i¼1 jaij with A ¼ ½a1; a2;

. . . ; am�
T 2 Rm, and lmaxðCÞ and lminðCÞ denote the largest and

smallest eigenvalues of a square matrix C, respectively.

2. New approximators for periodically disturbed functions

In this section, we will consider the approximation problem of
an unknown function affected by periodically time-varying
disturbance

y ¼ hð _w; yðtÞÞ, (1)

where h : Rl
� Rm

! R is an unknown and continuous function;
w ¼ ½w1; . . . ;wl�

T 2 O � Rl denotes the measured input vector with
O being a compact set, and y 2 R denotes the output variable;
yðtÞ ¼ ½y1ðtÞ; y2ðtÞ; . . . ;ymðtÞ�

T 2 Rm is a continuously and periodi-
cally time-varying disturbance with known period T, i.e.,
yðt þ TÞ ¼ yðtÞ, which is assumed to be unmeasured. The design
objective is to construct novel function approximators to model
the unknown function hðw; yðtÞÞ.

In fact, the main design obstacle is that the time-varying
disturbance vector yðtÞ is unmeasured. To overcome this obstacle,
considering the period property of yðtÞ, each component of yðtÞ,
i.e., yiðtÞ, 1 � i � m, can be also modelled by a linearly parameter-
ized FSE as follows [23]:

yiðtÞ ¼ CT
i FðtÞ þ Byi

ðtÞ; jByi
ðtÞj � B̄yi

, (2)

where Ci ¼ ½ci;1; . . . ;ci;r�
T 2 Rr is a vector including the first r

coefficients of the FSE of yiðtÞ (r is an odd integer), Byi
ðtÞ is the

truncation error with the minimum upper bound B̄yi
40, which

can be arbitrarily decreased by increasing r, and FðtÞ ¼

½f1ðtÞ; . . . ;frðtÞ�
T with f1ðtÞ ¼ 1, f2jðtÞ ¼

ffiffiffi
2
p

sinð2pjt=TÞ and
f2jþ1ðtÞ ¼

ffiffiffi
2
p

cosð2pjt=TÞ, j ¼ 1; . . . ; ðr � 1Þ=2. Then, we have

yðtÞ ¼

y1ðtÞ

..

.

ymðtÞ

2
6664

3
7775

¼

CT
1

..

.

CT
m

2
66664

3
77775FðtÞ þ

By1
ðtÞ

..

.

Bym
ðtÞ

2
6664

3
7775

¼:CTFðtÞ þ ByðtÞ, (3)

where kByðtÞk � B̄y with B̄y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B̄2
y1
þ � � � þ B̄2

ym

q
. It is obvious that B̄y

is also arbitrarily decreased by increasing r.

2.1. Construction of FSE-MNN-based approximator

In this subsection, by combining FSE into MNN, we will
construct an FSE-MNN-based approximator to solve the approx-
imation problem of unknown function (1).

On the one hand, when the disturbance yðtÞ is known, the
three-layer NN [2], as a representative of MNN, can be used to
approximate the function (1) as follows:

hðw;yðtÞÞ ¼WTSðVTZÞ þ dhðw; yðtÞÞ,
jdhðw; yðtÞÞj � d̄h, (4)

where Z ¼ ½wT; yT
ðtÞ;1�T 2 Rlþmþ1 is the NN input vector; W ¼

½w1;w2; . . . ;wp�
T 2 Rp is the first-to-second layer weight with the

NN node number p41;

V ¼ ½VT
w;V

T
y;V0�

T 2 Rðlþmþ1Þ�ðp�1Þ

is the second-to-third layer weight with

Vw ¼ ½vw;1;vw;2; . . . ;vw;p�1� 2 Rl�ðp�1Þ,

Vy ¼ ½vy;1;vy;2; . . . ;vy;p�1� 2 Rm�ðp�1Þ,

V0 ¼ ½v0;1;v0;2; . . . ;v0;p�1�
T 2 Rp�1,

SðVTZÞ ¼ ½sðvT
1ZÞ; sðvT

2ZÞ; . . . ; sðvT
p�1ZÞ;1�T,

where sð%Þ ¼ 1=ð1þ e�g%Þ, g40 and vi ¼ ½v
T
w;i;v

T
y;i;v0;i�

T

(1 � i � p� 1); dhðw; yðtÞÞ is the inherent NN approximation error
with the minimum upper bound d̄h � 0, which can be arbitrarily
decreased by increasing the NN node number p.

Now, we begin to construct a novel approximator for the
periodically disturbed function hðw; yðtÞÞ. Note VTZ ¼ VT

wwþ
VT
yyðtÞ þ V0, in which by replacing the unknown periodically

time-varying vector yðtÞ with (3), we get

VTZ ¼ VT
wwþ VT

yC
TFðtÞ þ V0 þ VT

yByðtÞ

¼ UTZ̄ðw; tÞ þ VT
yByðtÞ, (5)

where U ¼ ½UT
1;U

T
2; . . . ;U

T
p�1�

T ¼ ½VT
w;V

T
yC

T;V0�
T and Z̄ðw; tÞ ¼ ½wT;

FT
ðtÞ;1�T. Substituting (5) into (4) yields

hðw;yðtÞÞ ¼WTS½UTZ̄ðw; tÞ þ VT
yByðtÞ�

þ dhðw; yðtÞÞ. (6)

Remark 1. In (5), it seems that the state variable w can be
separated from the unknown periodic disturbance yðtÞ. This is
because w and yðtÞ are two independent input variables of
f ðw; yðtÞÞ, so the structure property of MNN allows Eq. (5) holds
(see [2,8]), but this does not mean that yðtÞ can be separated from
the unknown function f ðw;yðtÞÞ. In fact, yðtÞ still nonlinearly
appears in MNN, which can be easily seen from (6), where Sð�Þ is
still a nonlinear function.
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