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a b s t r a c t

The huge number of images on the Web gives rise to the content-based image retrieval (CBIR) as the

text-based search techniques cannot cater to the needs of precisely retrieving Web images. However,

CBIR comes with a fundamental flaw: the semantic gap between high-level semantic concepts and low-

level visual features. Consequently, relevance feedback is introduced into CBIR to learn the subjective

needs of users. However, in practical applications the limited number of user feedbacks is usually

overwhelmed by the large number of dimensionalities of the visual feature space. To address this issue,

a novel semi-supervised learning method for dimensionality reduction, namely kernel maximum

margin projection (KMMP) is proposed in this paper based on our previous work of maximum margin

projection (MMP). Unlike traditional dimensionality reduction algorithms such as principal component

analysis (PCA) and linear discriminant analysis (LDA), which only see the global Euclidean structure,

KMMP is designed for discovering the local manifold structure. After projecting the images into a lower

dimensional subspace, KMMP significantly improves the performance of image retrieval. The

experimental results on Corel image database demonstrate the effectiveness of our proposed nonlinear

algorithm.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

The Internet age sees a dramatic increase in the images stored,
exchanged and shared on the Web. Like their experience with text
search engines, Web users naturally require techniques and tools
that help them locate precisely the images they search. However,
image search is inherently a more difficult task than text search,
as noted by Datta et al. that text is man’s creation, while typical
images are a mere replica of what man has seen, for which
concrete descriptions are relatively elusive [4]. Furthermore, like
other resources on the Web, image collections are semi-struc-
tured, nonhomogeneous, and massive in volume, making effective
retrieval even more challenging.

To address this issue, content-based image retrieval (CBIR) was
introduced in the early 1980s and from then on has attracted
substantial research interest [20,22,16,17,26,25,2,9,27]. CBIR aims
to organize image collections by their visual contents such as
color, texture, shapes, etc. Image retrieval is thus performed in the
feature space to find similar images to the example submitted by
user. The most challenging problem in CBIR is the semantic gap
between low-level visual features and high-level semantic
concepts [4]. That is, the richness of the user’s subjective needs
is not matched by the simplicity of the available low-level visual

features. One feasible way to address this problem is through
learning from the user’s relevance feedback [20].

While the relevance feedbacks provided by the user is often
quite limited, typically less than 20, there might exist hundreds or
even thousands of features to represent an image. This leads to a
crucial problem in CBIR called as the ‘‘curse of dimensionality’’ [18],
i.e. algorithms and procedures that are analytically and compu-
tationally effective in low-dimensional space become totally
impractical in this case. Thus, various dimensionality reduction
techniques have been introduced to ease this problem. Perhaps
the most canonical dimensionality reduction algorithms are
principal component analysis (PCA) [5,23] and linear discriminant
analysis (LDA) [5,24]. PCA is unsupervised and it aims to find a
projection on which the data variance is maximized. LDA is
supervised. It aims to find a projection on which data points with
the same label are clustered whereas data points with different
labels are distant from one another. When relevance feedback is
introduced, image retrieval is essentially a supervised learning
problem. Therefore, LDA usually gives better performance than
PCA.

The major disadvantage of PCA and LDA is that both of them
see only Euclidean structure. However, many researcher have
shown that the image space is probably a nonlinear manifold
[10,8,15,7]. In order to discover the manifold structure, many
manifold learning algorithms were developed in recent years. In
[11] He et al. proposed locality preserving projections (LPP) to find
a linear approximation of the intrinsic data manifold. Image
retrieval using LPP [7,12] is then performed in the reduced
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subspace by using a Euclidean metric. Another work in image
retrieval, augmented relation embedding (ARE) [15] learns a
semantic manifold by taking into account the user’s preferences.
Most recently, He et al. proposed a novel image retrieval method
called maximum margin projection (MMP) [8] that discovers the
local manifold structure by maximizing the margin between
positive and negative examples at each local neighborhood. These
algorithms have demonstrated superior performance to tradi-
tional Euclidean based algorithms. However, they are still linear
algorithms and may fail if the image space is highly nonlinear.

Some other nonlinear manifold learning techniques, including
locally linear embedding (LLE) [19], Isomap [28], and Laplacian
Eigenmaps [1], consider the case when the data lives on or close to
a nonlinear submanifold of the ambient space. These methods
attempt to discover the intrinsic manifold structure by estimating
both the geometrical and the discriminant properties of the
submanifold from random points lying on this unknown sub-
manifold. However, these methods are defined only on the
training data points, and it is unclear how the map can be
evaluated for new test points. Therefore, they are not suitable for
image retrieval. Besides, recently there has been a lot of interest in
tensor-based dimensionality reduction, see [14].

In this paper, we propose a novel nonlinear manifold learning
algorithm called kernel maximum margin projection (KMMP).
KMMP is fundamentally based on maximum margin projection
[8]. By using kernel techniques, the embedding can be performed
in the reproducing kernel Hilbert space (RKHS) [21] which gives
rise to nonlinear embedding. When a linear kernel is used, KMMP
reduces to MMP. Similar to MMP, KMMP is also defined every-
where. KMMP finds a mapping function which can map any new
test points to the lower dimensional Euclidean space. By using
nonlinear kernel, the nonlinear structure of the image manifold
can be well preserved, and therefore the image retrieval
performance can be improved.

The rest of the paper is organized as follows. In Section 2, we
give a brief review of the canonical dimensionality reduction
algorithms, that is, PCA and LDA. We describe our proposed kernel
maximum margin projection algorithm in Section 3. The experi-
mental results are presented in Section 4. Finally, we give
concluding remarks and suggestions for future work in Section 5.

2. Linear dimensionality reduction

In this section, we give a brief description of PCA and LDA.

2.1. Principal component analysis

The generic problem of linear dimensionality reduction is the
following. Given a set x1;x2; . . . ;xm in Rn, find a transformation
matrix A ¼ fa1; a2; . . . ; alg that maps these m points to a set of
points y1; y2; . . . ; ym in Rl (l� n), such that yi ‘‘represents’’ xi,
where yi ¼ AT xi.

PCA can be viewed as finding the projecting axes which
minimize the reconstruction error:

min
X

i

kðaT xiÞa� xik
2

s:t: kak2 ¼ 1 (1)

Let X ¼ ðx1;x2; . . . ;xmÞ. This will yield the following eigen-
problem:

XXT a ¼ la (2)

The solutions of a correspond to the eigenvectors with the largest
eigenvalues.

On the other hand, PCA can also be viewed as finding the
directions where data scatters most, i.e. maximize the amount of
scattering as follows:

max
X

i

ðaT xiÞ
2

s:t: kak2 ¼ 1 (3)

which is equivalent to finding a subjects to

max aT
X

i

xix
T
i a

s:t: kak2 ¼ 1 (4)

which has exactly the same solution as the eigen-problem above.
This is why the matrix XXT

¼
P

ixix
T
i is called scattering matrix

since its largest eigenvalues measure the amount of scattering of
data points.

2.2. Linear discriminant analysis

In contrast to PCA, LDA aims at finding the projecting axes on
which data points with the same label are mapped together
whereas data points with different labels are mapped far apart.
LDA is a supervised method. To be more specific, LDA maximizes
the between-class scattering and minimizes the within-class
scattering.

The within-class scattering is defined in the same way as the
scattering in PCA but within each class:

sW ¼
Xc

i¼1

si ¼
Xc

i¼1

aT
X
j2Di

xjx
T
j a

0
@

1
A (5)

The between-class scattering is defined as the scattering of the
mean vectors of each class:

sB ¼ aT
Xc

i¼1

�xi �x
T
i a (6)

LDA solves the following optimization problem:

max
sB

sW
¼

aT SBa

aT SW a
(7)

where SB ¼
Pc

i¼1
�xi �x

T
i and SW ¼

Pc
i¼1

P
j2Di

xjx
T
j are called be-

tween-class scattering matrix and within-class scattering matrix,
respectively.

This yields a generalized eigen-problem:

SBa ¼ lSW a (8)

which can be solved as a conventional eigen-problem since SW is
usually nonsingular. The solution of a corresponds to the
eigenvectors with largest eigenvalues.

3. Kernel maximum margin projection

In this section, we introduce the kernel maximum margin
projection algorithm. Since our algorithm is fundamentally based
on maximum margin projection [8]. We begin with a brief
description of the graph construction in MMP.

3.1. Graph based semi-supervised manifold learning

We consider the case of m data points fx1;x2; . . . ;xmg 2 Rn

sampled from a underlying image submanifold M, with the first
point (x1, query example) labeled and the rest m� l points
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