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a b s t r a c t

Learning with coefficient-based regularization has attracted a considerable amount of attention

recently in both machine learning and statistics. This paper presents a kernelized version of a quantile

estimator integrated with coefficient-based regularization, which can be solved efficiently by a simple

linear programming. Fast convergence rates are obtained under mild condition on the underlying

distribution. Besides, this algorithm can be adapted easily to large scale problems and sparse solution is

often achieved as that of Lasso. In our work we make the following main contributions: girst, improved

learning rates are obtained by employing so called variance bounds, which is optimal in the literatures

of learning theory; second, we establish stronger convergence rates by employing self-calibration

inequalities; third, our learning rates can also be derived by a simple data-dependent parameter

selection method; finally, the performance of the classical and our new algorithms are compared

respectively in a simulation study and an actual problem.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

Quantile regression has emerged as a comprehensive approach
for analyzing the impact of regressors on the conditional dis-
tribution of a response variable [12,13] and others. In this paper,
we consider quantile regression from a learning theory view-
points. We begin with a supervised learning problem over a
collection of observational data z¼ fðxi,yiÞg

m
i ¼ 1, drawn from an

unknown distribution r on X�Y, where xiAX �Rn is an input
space and yiAR is the corresponding output for the regression
problem. Given a loss function L : Y �R-½0,1Þ, we hope that the
following risk functional

Rðf Þ :¼
Z

X�Y
Lðy,f ðxÞÞ drðx,yÞ

is small over all measurable functions on X, and the least square loss
ðLðy,f ðxÞÞ ¼ ðy�f ðxÞÞ2Þ is the most commonly used, which corre-
sponds to the conditional mean function. The conditional mean
regression describes the centrality of the conditional response dis-
tribution. However, sometimes one wants to obtain a good estimate
satisfying a certain proportion of y9x below the estimate. For example,
for financial risk management, an investor may need to estimate a
lower bound on the changes in the value of its portfolio with high
probability, so as to take positive measure beforehand to avoid big
asset volatility. In this case the mean function is no longer valid since
it cannot provide more complete descriptions of the conditional

response distribution. The above problem can be solved by means
of quantile regression, which has an equivalent relationship with the
so-called t-pinball loss, defined by

Ltðy,tÞ ¼
ð1�tÞðt�yÞ if yot,

tðy�tÞ if yZt:

(
ð1:1Þ

Let rð�9xÞ be the conditional distribution of r, and with fixed
any constant tA ð0,1Þ, the set-valued function is defined as

Fn

t,rðxÞ :¼ ftAR : rðð�1,t�9xÞZt and rð½t,1Þ9xÞZ1�tg, xAX:

If rð�9xÞ has finite support, it is well understood that Fn

t,rðxÞ is a
bounded and closed interval at any xAX in [20]. We write

tnminðxÞ :¼ minfFn

t,rðxÞg and tnmaxðxÞ :¼maxfFn

t,rðxÞg,

which imply that Fn

t,rðxÞ ¼ ½t
n

minðxÞ,t
n
maxðxÞ�. Moreover, it is easy to

check that the interior of Fn

t,rðxÞ is a rð�9xÞ-zero set, namely,
rððtnminðxÞ,t

n
maxðxÞÞ9xÞ ¼ 0. In this paper we assume that Fn

t,rðxÞ

consists of singletons, namely, there exists a function f nt,r : X-R

called the conditional t-quantile function, such that Fn

t,rðxÞ ¼

ff nt,rðxÞg for almost every xAX.
With the help of the t-pinball loss, one can easily verify that

f nt,r is a minimizer of Rðf Þ associated with Lt, and for almost every
xAX

f nt,rðxÞ ¼ arg min
tAR

Z
Y

Ltðy,tÞ drðy9xÞ:

Quantile regression is an important statistical methods for ana-
lyzing the impact of the regressors on the conditional distribution
of a response variable. Compared with the conditional mean, one
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of the advantages using quantile regression is that quantile
regression is more robust in response to large outliers. In recent
years, quantile regression has been widely used in many practical
applications, such as reference charts in medicine [2,9] and
economics [11]. For comprehensive reviews of quantile regres-
sion, refer to the articles by Koenker and Hallock [11,30] and well-
written book by Koenker [12].

Throughout this paper, we assume that rð�9xÞ is supported on
½�M,M� for some constant M40, and it follows that 9f nt,rðxÞ9rM

for xAX almost surely. A special case with t¼ 1
2 of (1.1) gives the

absolute value function, that is, L1=2ðy,tÞ ¼ 1
29y�t9, and the mini-

mizer f n1=2,r becomes the median function Mr defined at each
xAX by

rðyZMrðxÞ9xÞZ
1

2
and rðyrMrðxÞ9xÞZ

1

2
:

Usually f nt,r cannot be computed directly, due to the unknown
distribution r. Instead, one seeks to minimize the empirical error

associated with the sample z and t-pinball loss, which is given by

Rzðf Þ ¼
1

m

Xm
i ¼ 1

Ltðyi,f ðxiÞÞ:

Unfortunately, minimizing Rzðf Þ may lead to overfitting, that is,
complex functions fit well on training data but not be able to
generalize to unseen data. A promising approach to avoid this is
to minimize the following regularized risk:

min
f AH
fRzðf ÞþlOðf Þg, ð1:2Þ

where H is a pre-specified hypothesis function space and O is a
functional on H.

Kernel methods have been widely used in many areas of
machine learning and achieved great success. Among others
kernel regression has drawn much attention including quantile
regression and least square regression. The study has focused on
the application of Mercer kernels and regularization in the
associated reproducing kernel Hilbert space (RKHS). Let K : X �

X-R be a bounded, symmetric, and positive semi-definite func-
tion. The RKHS denoted by HK associated with the kernel K is the
completion of the linear span of functions Kx :¼ Kðx,�Þ,xAX with
the inner product given by /Kx,KySHK

¼ Kðx,yÞ. With these pre-
paration, the learning algorithm for the quantile regression is
given by the regularization scheme (see [23,16,20])

f z ¼ arg min
f AHK

1

m

Xm

i ¼ 1

Ltðyi,f ðxiÞÞþlJf J2
K

( )
, ð1:3Þ

where 0olr1, a regularization parameter controlling the trade-off
between the empirical error and the penalty. In practice, we need to
choose an adaptive parameter l which usually depends on the
sample, and probably the cross validation approach is the most
commonly used technique aiming at this, but burdens upper compu-
tational complexity when the sample size is large. To this end, in
Section 5 we will employ a standard training-validation approach to
choose a suitable l, also we give the convergence rate of our proposed
algorithm (1.4) below based on such adaptive parameter.

Note that the resulting function f z generated by (1.3) is given
as a dense expansion in terms of the training patterns, which adds
to computational cost greatly. To solve large-data problems, a
promising fact is that sparse solutions are often achieved in
statistics and compress sensing settings by imposing an
L1-regularizer on the expansion coefficients [3,18,24]. The L1-norm
penalty not only shrinks the fitted coefficient toward zero, but also
causes some of the fitted coefficient to be exactly zero when l is
chosen to be large enough. Thus a lot of irrelevant noise variable or
useless data can be removed mostly. In order to introduce
L1-regularizer in a machine learning setup, we need to study the

coefficient-based regularization scheme, which can be written as

f z,l ¼ arg min
f aAHK ,z

fRzðf aÞþlOzðf aÞg, ð1:4Þ

where

HK ,z ¼ f aðxÞ ¼
Xm

i ¼ 1

aiKðx,xiÞ : a¼ ða1, . . . ,amÞARm

( )
and

Ozðf aÞ ¼
Xm

i ¼ 1

9ai9 for f aðxÞ ¼
Xm
i ¼ 1

aiKðx,xiÞ:

Algorithm (1.4) is a linear programming which can be solved
efficiently by existing codes for large scale problems. For com-
pleteness, we also give the concrete optimization procedure in
Section 6. This approach is similar to Linear Programming
Regularization by proposed Smola et al. [23]. However, the main
difference lies in that some convex function class substitutes the
set of functions Kð�,xiÞ here, rather than acting automatically on
data point xi. It is worth noting that our choice of basis functions
Kðx,xiÞ is more natural since the solution of (1.3) can be found in a
finite-dimensional space spanned by the set of functions
fKðx,xiÞg

m
i ¼ 1 [16,23]. Also we find later that this ensures good

generalization ability theoretically.
It is worth noting that some previous works have considered

the format: L1 loss þ L1 penalty structure. For example, Koenker
et al. [14] used l

R 1
0 9f 00ðxÞ9 dx as the penalty, namely,

min
f AF

Xm
i ¼ 1

Ltðyi,f ðxiÞÞþl
Z 1

0
9f 00ðxÞ9 dx,

where F is a certain function space. As is shown that the solution
is a linear spline with knots xi ði¼ 1, . . . ,mÞ if F is chosen appro-
priately. This motivates partially us to study the coefficient-based
regularization scheme, considering that smoothing spline function
can be viewed as a special kernel.

In the field of machine learning, the coefficient regularization
was first introduced in [6] to design linear programming support
vector machine. In [7], the sparse property of estimation coeffi-
cients with least square regression was discussed by a spectral
decomposition technique. In terms of theoretical analysis, [27]
derived some learning rates by using a local polynomial repro-
duction formula in approximation theory. In their analysis, the
quantile regression was paid especially under rather general
conditions. Ref. [17] provided a unified analytical framework for
coefficient-based regularization with strict convex regularizer and
indefinite kernel. As we notice, the previous works mentioned
above did not consider the effect of the conditional distribution to
the convergence rates. In this paper, we can improve the corre-
sponding learning rates sharply by making fully use of the
information on the conditional distribution and the so-called
comparison theorem first proposed in [32]. In addition, we apply
the empirical covering numbers to measure the functional com-
plexity instead of uniform covering numbers [27]. This ensures
the entropy integral finiteness with respect to the space HK ,z,
which is shown in Section 4.

From the algorithmic point of view, one expects that (1.4)
would be more stable and computational efficiency, and most
importantly f z,l can approximate the target function f nt,r well in
the whole space X as the sample size m tends to infinity. Error
analysis for regularization (1.4) aims at estimates of the excess
generalization error Rðf z,lÞ�Rðf

n

t,rÞ in terms of the kernel K, the
t-pinball loss and the underlying measure r through the proper
choice of the regularization parameter l. However, this only
implies that f z,l is close to f nt,r in a weak form. Recently, some
stronger convergence rates are derived from establishing so called
self-calibration inequalities (see [20,25]).
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