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a b s t r a c t

In the original formulation of common spatial pattern (CSP), all recording channels are combined when

extracting the variance as input features for a brain computer interface (BCI). This results in overfitting

and robustness problems of the constructed system. Here, we introduce a sparse CSP method in which

only a subset of all available channels is linearly combined when extracting the features, resulting in

improved generalization in classification. We propose a greedy search based generalized eigenvalue

decomposition approach for identifying multiple sparse eigenvectors to compute the spatial projec-

tions. We evaluate the performance of the proposed sparse CSP method in binary classification

problems using electrocorticogram (ECoG) and electroencephalogram (EEG) datasets of brain computer

interface competition 2005. We show that the results obtained by sparse CSP outperform those

obtained by traditional (non-sparse) CSP. When averaged over five subjects in the EEG dataset, the

classification error is 12.3% with average sparseness level of 11.6 compared to 18.4% error obtained by

the traditional CSP with 118 channels. The classification error is 10% with sparseness level of

7 compared to that of 13% obtained by the traditional CSP using 64 channels in the ECoG dataset.

Furthermore, we explored the effectiveness of the proposed sparse methods for extracting sparse

common spatio-spectral patterns (CSSP).

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

The use of neural activity as a source of information has
enabled the subjects with motor impairments to communicate
with their environment using brain computer interfaces. A brain
computer interface (BCI) extracts critical patterns from neural
activity which are induced by purely mental tasks and processes
to identify the mental state of the subject [1,2].

Recent advances in microprocessor and microcircuit design
have enabled recording of neural data over large number of
channels. One of the most crucial steps in designing a BCI system
is to extract parsimonious features from the multi-channel neural
recordings. The CSP method is a signal processing technique that
extracts features by combining signals from all available record-
ing channels. The method was first proposed in [3] to analyze
abnormal EEG patterns. Since then, it has been one of the most
effective feature extraction tools of current BCI technology in
binary and multi task classification problems [4–7]. The CSP
method [3,8] finds spatial filters which correspond to linear

weighting of each channel in a multi-channel setup. Namely,
the relationship between the input multi-channel brain signal,
x(t), and the output, xCSP(t), after CSP filtering is given by
xCSP(t)¼WTx(t). Here, each column of W is a distinct spatial filter
that captures different spatial localizations of the underlying
brain activity. In a binary BCI application, the solution of the
spatial filters is achieved by solving a generalized eigenvalue
decomposition (GED) problem in which the variance of one class
is maximized while minimizing the variance of the other [2]. The
CSP filters achieve this task by using the spatial correlation
patterns which are sensed from a number of recording channels.
Consequently, dense neural recordings have higher likelihood in
capturing the discriminative spatial patterns as they cover most
of the surface available to assess brain activity. However, this
results in redundancy of information and makes the current BCI
systems more prone to artifacts since it is difficult to obtain
robustness over sessions.

Recent studies [2,9,10] have shown that the CSP method suffers
from a number of problems which pose new challenges when
using this method in practice. Let us shortly summarize these
challenges. Generally, the multi-channel neural recordings are
obtained at different times or sessions. This means that the
parameters necessary to extract features and the classifier are
obtained using the data collected in one session. These parameters
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are used to classify the neural data in another session. The time
difference introduces variation in the neural patterns. Furthermore,
in the case of EEG the electrodes are removed and reattached
between sessions. Variation in the data creates even larger varia-
tion in the extracted features due to linear combinations. Even the
failure of a single channel or an outlier in the data might cause
significant changes in the features. This increases the sensitivity of
the algorithm to intersession variability; therefore, degrades over-
all performance of the CSP method.

Another problem of the CSP method arises when the size of the
training data is smaller than the number of recording channels
[10]. The extraction of the spatial filters in CSP formulation relies
on the estimated correlation matrices for the two tasks we want
to discriminate. In the presence of large number of recording
channels, the estimation of the correlation matrices are poor. As a
result, the algorithm overfits the data and deteriorates the
generalization performance. Consequently, a regularization step
is necessary to overcome the robustness and overfitting problems
of the standard CSP algorithm.

In the standard CSP method there is no constraint on the
number of nonzero components in each spatial filter. Recently, in
[9,11], sparse spatial filters are extracted by adding L1 norm
constraint in to the CSP formulation. In both of the studies, it has
been shown that the number of channels can be reduced
significantly but with a decrease in the classification accuracy.
The solution employed in these approaches most likely gets
trapped in a local minimum and is not the best possible sparse
spatial filter for a given cardinality. This is due to the non-
convexity of the optimization problem to be solved in the CSP
formulation [12, Chapter 3]. At the same time, finding a solution
with a predefined number of nonzero weights in the spatial filter
is not a straightforward task with an L1 norm based approach.

Here, we reformulate the traditional CSP problem to obtain
sparse spatial filters by employing greedy search methods used in
[13,14]. The results given by [13] in the case of principal
component analysis (PCA) problem using L1 norm regularization
compared to that of using greedy search are our motivation to
employ a greedy search based method to find the sparse CSP
filters. In particular, our goal is to extract spatial filters by solving
the CSP formulation such that the resulting filters have only a few
nonzero components. With regularization via sparseness in the
spatial filters, we expect to decrease the sensitivity of the CSP
algorithm to the variations in the multi-channel input data. The
essential idea of the regularization via sparsifying the solution is
presented in a regression framework in [12, Chapter 6]. Basically,
since in CSP framework the features are obtained by multiplying
the spatial filter with the input signal, variation in the input signal
will result in even more variation in the features. Therefore,
forcing the spatial filter to be sparse will diminish the variation
in the features. Clearly, the likelihood of a failure of a single
channel is small in a sparse projection compared to projection
using all the channels. Hence, an improvement in robustness is
expected. Moreover, the covariance matrices can be better esti-
mated using a small sensor suite where a limited number of
training trials is available. Therefore, our approach will enhance
the generalization performance of the CSP method.

With these motivations we constructed an L0-norm based
sparse CSP approach with multiple eigenvectors where the initial
idea was presented in [15]. Moreover, we extended the sparse CSP
framework to spatio-spectral filtering. Our contribution in this
study is twofold; (a) extending the greedy search based methods
of [14] to find multiple sparse solutions to a GED problem and
(b) studying multiple sparse solutions in CSP and CSSP frame-
works in noninvasive and invasive BCI applications. The goal in
(a) is achieved by formulating the optimization problem in
Lagrange form as employed in [16]. We tested our approach on

two different modalities, the EEG and ECoG datasets which have
distinct characteristics. While EEG is a noninvasive and robust
recording technique, it suffers from spatial specificity and is prone
to artifacts. On the other hand, the ECoG is a highly invasive
technique with superior spatial resolution and high SNR. Consis-
tently, on all subjects, we observed that our method outper-
formed the standard CSP and CSSP method on both EEG and ECoG
datasets. Moreover, the selected cardinality in the sparse spatial
projections for the ECoG dataset was lower than the EEG dataset.
This perfectly correlates with the nature of these modalities
where the ECoG is more spatially localized. Our results show that
the method we proposed can be effectively used on both non-
invasive and invasive modalities.

The rest of the paper is organized as in the following. In the
next section we first provide the details of extracting the standard
CSP filters via the GED formulation. Then, we introduce the details
of our approach to find sparse CSP filters. We explored the
performance of the greedy search based sparse CSP method in a
binary classification problem both on EEG and ECoG datasets used
in BCI competition 2005 [17]. We describe the experimental
setups in Section 3. Then in Section 4, we provide the perfor-
mance evaluation results obtained by the sparse CSP and those
obtained by standard CSP. We provide an exploratory analysis of
the proposed methods in CSSP framework at the end of this part.
Finally, in Section 5 we discuss our results and future work.

2. Methods

2.1. Traditional CSP

Let us shortly describe the traditional CSP method and its
optimization formulation. By traditional CSP we mean the CSP in
its original formulation to distinguish it from our approach as
sparse CSP (sCSP). We refer the reader to [2] and references
therein for a recent review on CSP and its applications.

Let us consider a binary BCI problem with two classes, Yl,
l¼1,2. Let C be the number of channels and N be the number of
time samples in each channel. Then, XiARC�N represents the
multi-channel neural data in the ith trial. The labels of each trial
are known during the training. The CSP solves the following
optimization problem to find the spatial filters (w);

argmax
w

wTS1w

wTS2w
ð1Þ

in this equation, Sl, l¼ 1,2 denote estimated covariance matrices
for each class and are C�C dimensional. A simple interpretation
of Eq. (1) can be stated as finding a vector w such that the
variance of class Y1 is maximized while that of class Y2 is
minimized. This formulation in Eq. (1) is equivalent to the
following:

argmax
w

wTS1w s:t: wTS2w¼ 1 ð2Þ

After writing the latter formulation in Lagrange form and
taking the derivative with respect to the variable w gives us the
following equality:

S1w¼ aS2w ð3Þ

Eq. (3) is known as the GED problem, and its closed form
solution is available via joint diagonalization of both of the
numerator and denominator that can be found in [18]. There
are C eigenvector and eigenvalue pairs (wi, ai), all eigenvalues are
positive. Since, from (3) 1=a

� �
S1w¼S2w, the eigenvector which

maximizes the variance in (2) for one class also minimizes the
variance for the other class. Hence, variance is used as feature in
CSP framework. It is a common practice to select an equal number
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