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a b s t r a c t

We propose a novel method for the autonomous determination of endmembers that employs recent

results from the theory of lattice based auto-associative memories. In contrast to several other existing

methods, the endmembers determined by the proposed method are physically linked to the data set

spectra. Numerical examples are provided to illustrate lattice theoretical concepts and a hyperspectral

image subcube, from the Cuprite site in Nevada, is used to find all endmember candidates in a single

pass.

& 2008 Elsevier B.V. All rights reserved.

1. Introduction

Advances in passive remote sensing has produced imaging
devices with ever growing spectral resolution. The high spectral
resolution produced by current hyperspectral imaging devices
facilitates identification of fundamental materials that make
up a remotely sensed scene and thus supports discrimination
between them. A typical pixel of a multispectral or hyperspectral
image generally represents a region on the ground consisting of
several square meters. For example, each Landsat Thematic
Mapper pixel represents a 30� 30 m2. Thus, a hyperspectral
image pixel can have all or parts of many different objects
in it. The collection of measured reflectance values associated
with the pixel is called the spectrum of the pixel. It is, there-
fore, useful to know the percentage of different, fundamental
object parts that are most represented in the spectrum of a
given pixel. The most widely used spectral mixing model is the
linear mixing model, which assumes that the observed reflectance
spectrum of a given pixel is a linear combination of a small

number of unique constituent deterministic signatures known as
endmembers. This model has been used by a multitude of
researchers ever since Adam et al. [1] analyzed an image of
Mars using four endmembers. In the cited reference and various
other applications, hyperspectral image segmentation and analy-
sis takes the form of a pattern recognition problem as the
segmentation problems reduces to matching the spectra
of the hyperspectral image to predetermined spectra stored in a
library. In many cases, however, endmembers cannot be deter-
mined in advance and must be selected from the image directly
by identifying the pixel spectra that are most likely to represent
the fundamental materials. This compromises the autonomous

endmember detection problem. Unfortunately, the spatial resolu-
tion of a sensor makes it often unlikely that any pixel is
composed of a single endmember. Thus, the determination of
endmembers becomes a search for image pixels with the least
contamination from other endmembers. These are also referred to
as pure pixels. The pure pixels exhibit maximal reflectance in
certain spectral bands and correspond to vertices of a high
dimensional simplex. This simplex, hopefully, encloses most if not
all the pixel spectra.

In this paper we assume the linear mixing model, which is
based on the fact that points on a simplex can be represented as a
linear sum of the vertices that determine the simplex [8,17,18].
The mathematical equations of the model and its constraints are
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given, respectively, by Eqs. (1) and (2):

x ¼
Xm
k¼1

akek þ n ¼ Eaþ n, (1)

Xm

k¼1

ak ¼ 1 and akX0 8k, (2)

where x 2 Rn is the measured spectrum over n bands of an image
pixel, E ¼ ðe1; e2; . . . ; emÞ is an n�m matrix whose columns are the
m endmember spectra assumed to be affinely independent, a ¼
ða1; a2; . . . ; amÞ

T is an m-dimensional column vector whose entries
are the corresponding fractional abundances or, equivalently, the
percentages of endmember spectra present in x, and n 2 Rn is an
additive noise vector.

Endmembers may be obtained from spectral libraries for
certain specific materials, or autonomously from the image by a
variety of techniques [3,4,27,33,34]. Autonomous endmember
detection has received wide attention since signatures of various
objects that may be present in an image are unknown before
hand. Boardman [3,4] uses the framework of the geometry of
convex sets to identify the mþ 1 endmembers as the vertices of
the smallest simplex that bounds the measured data. A major
problem is that the vertices need not be image pixels (which in
most cases they are not) and, hence, need not have any physical
connection to actual image data.

Winter’s N-FINDR method [33,34] is based on inflating a
simplex within the data set to determine the largest simplex
inscribed within the data. It is not clear how pixels outside the
inscribed data are handled and the exact algorithm is not available
in print or on the web. Additionally, the algorithm is computa-
tionally intensive despite claims to the contrary. Individual pixels
need to be examined and simplex volume recalculated for each
image pixel. In contrast, the autonomous endmember determina-
tion proposed in this paper is extremely fast and carries little
computational overhead. The method is derived from examining a
lattice based auto-associative memory that stores the hyperspec-
tral image cube in its memory. Graña et al. [10–12,14] was the first
to propose the use of lattice based auto-associative memories for
autonomous endmember determination. Specifically, he employs
the notion of morphological independence which does not
necessarily lead to finding an affinely independent set of vectors
that in some sense provides a maximal simplex within the data
set. Graña’s algorithm forces the user to choose a starting pixel
and different starting pixels can produce different results. The
method described in this paper is different and will always
provide the same sets of endmembers for a given hyperspectral
image. Recent works based on strong lattice independence
and alternative criteria to get a set of final endmembers appear
in [13,36].

2. Mathematical background

2.1. Linear and affine independence

If X ¼ fx1; . . . ; xkg � Rn, denotes a finite set of real vectors,
recall that a linear combination of X is an expression of the formPk

x¼1axxx where the ax’s are scalars, i.e., ax 2 R for all
x 2 K ¼ f1; . . . ; kg. Then, X is said to be a linearly independent set
if the unique solution to the equation

Pk
x¼1axxx ¼ 0 is given

by ax ¼ 0 for x 2 K. Otherwise, the vectors in X are said to be
linearly dependent. The next lemma states a basic result in linear
algebra [9].

Lemma 2.1. Let Kg
¼ Knfgg denote the index set from which index g

has been deleted. If the set of vector differences, X0 ¼ fxx � xg : x 2

Kg
g is linearly independent for some g 2 K , then X0 is a linearly

independent set 8g 2 K.

Thus, to form set X0, any vector xg in X, considered as a ‘‘point’’,
can be selected as an origin for the remaining vectors in Xnfxgg.
From a geometrical point of view, an affine combination or
barycentre is a linear combination of X subject to the conditionPk

x¼1ax ¼ 1. Furthermore, a convex combination is an affine
combination such that, axX0 8x 2 K , and the set of all convex
combinations formed with elements of X is known as the convex

hull of X, denoted here as CðXÞ. In effect, an affine combination is a
weighted average of the points in question. For example, the
unique point x 2 CðXÞ computed as ð1=kÞ

Pk
x¼1xx, is the convex

combination known as the center of mean distances of X.
With the help of Lemma 2.1, it is possible to characterize the

notion of affine independence as follows: X ¼ fx1; . . . ; xkg � Rn is

said to be an affinely independent set if X0 ¼ fxx � xg : x 2 Kg
g � Rn

is a linearly independent set for some g 2 K [9]. Notice that,

although set X has k elements, there are only k� 1 points in X0.

Also, it is not difficult to justify that, the vectors x1; . . . ; xk 2 Rn are
affinely independent if the unique solution to the simultaneous

equations
Pk

x¼1axxx ¼ 0 and
Pk

x¼1ax ¼ 0 is given by ax ¼ 0 for all

x ¼ 1; . . . ; k [5]. Hence, linear independence implies affine in-
dependence but not vice versa.

2.2. Basic concepts from lattice theory

Computational concepts for neural networks based on lattice
theory [2,21,29] are governed by the bounded lattice ordered group

ðR�1;_;^;þ;þ0Þ or R�1-blog, where R denotes the set of real
numbers, R�1 ¼ R [ f�1;1g is the set of extended real numbers,
_ and ^ denotes, respectively, the binary operations of maximum
and minimum, and þ;þ0 denotes addition and its dual operation
defined by

xþ0y ¼ yþ x 8x 2 R; y 2 R�1,

1þ0ð�1Þ ¼ 1 ¼ ð�1Þþ01,

1þ ð�1Þ ¼ �1 ¼ ð�1Þ þ1. (3)

If x 2 R�1, then its additive conjugate is given by x� ¼ �x. In a
similar fashion, for a given vector x 2 Rn

�1, its conjugate is defined
by x� ¼ �xT, where T denotes transposition. Scalar addition in the
Rn
�1-blog, where Rn

�1 denotes the n-fold Cartesian product of
R�1, is defined component wise. That is, if a 2 R�1 and x 2 Rn

�1,
then aþ x ¼ ðaþ x1; . . . ; aþ xnÞ

T; the dual operation, aþ0x, is
defined similarly. As our application domain concerns only with
finite sets of real valued vectors, X ¼ fx1; . . . ; xkg � Rn

�1 for which
xx 2 Rn for each x 2 K where K ¼ f1; . . . ; kg. With this restriction
the operation of scalar addition is self-dual since aþ0xx ¼ aþ xx for
any a 2 R�1 and for all x 2 K. Henceforth, we suppose that
X ¼ fx1; . . . ; xkg � Rn.

A linear minimax combination of vectors from the set X is any
vector x 2 Rn

�1 of the form

x ¼ Sðx1; . . . ; xkÞ ¼
_
j2J

^
x2K

ðaxj þ xxÞ, (4)

where J is a finite set of indices and axj 2 R�1, 8j 2 J and 8x 2 K.
The expression Sðx1; . . . ; xkÞ given by (4) is also called a linear

minimax sum. A vector x 2 Rn is lattice dependent on X if and only if
x ¼ Sðx1; . . . ; xkÞ for some linear minimax sum of vectors from X.
The vector x is said to be lattice independent (LI) of X if and only if
it is not lattice dependent on X. The set X is said to be LI if and only
if 8l 2 f1; . . . ; kg, xl is LI of the reduced set Xl defined as Xnfxlg ¼
fxx 2 X : xalg [22].

Given two m� n matrices A ¼ ðaijÞ and B ¼ ðbijÞ with entries
from R�1, then the pointwise maximum, A _ B, of A and B, is the
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