
Using promoters and functional introns in genetic algorithms for
neuroevolutionary learning in non-stationary problems

F. Bellas �, J.A. Becerra, R.J. Duro

Integrated Group for Engineering Research, Universidade da Coruña, Spain

a r t i c l e i n f o

Available online 16 December 2008

Keywords:

Genetic algorithms

Artificial neural networks

Neuroevolution

Non-stationary functions

Robotic learning

a b s t r a c t

This paper addresses the problem of adaptive learning in non-stationary problems through

neuroevolution. It is a general problem that is very relevant in many tasks, for example, in the context

of robot model learning from interaction with the world. Traditional learning algorithms fail in this task

as they have mostly been designed for learning a single model in a static setting. Neuroevolutionary

techniques have obtained promising results in this non-stationary context but are still lacking in certain

types of problems, especially those dealing with information streams where different portions

correspond to different models. An extension through the introduction of the concept of introns and

promoter genes enables neuroevolutionary algorithms to improve their performance on this type of

problems. Following this approach, an implementation of these concepts on a genetic algorithm for

neuroevolution is presented here. This algorithm is called promoter based genetic algorithm (PBGA) and

it uses a genotypic representation with a set of features that allows for an intrinsic memory in the

population that is self-regulated, in the sense that functional parts of the individuals are preserved

through generations without an explicit knowledge about the number of different tasks or models that

have to arise from the data stream. Some illustrative tests of the potential of these techniques based on

the continuous switch between completely different objective functions that must be learnt are

presented and the results are analyzed and compared to other neuroevolutionary algorithms.

& 2008 Elsevier B.V. All rights reserved.

1. Introduction

In real-world robot learning, there are usually no direct targets
that permit choosing the correct action for every situation, leading
to processes whereby optimal behavior must be learnt by
exploring different actions and observing their results, thus, in a
certain sense, by obtaining models of the interaction with the
world. The domains in which these processes take place are
usually continuous, partially observable, non-stationary and, in
general, episodic. These four characteristics are what make it so
difficult to provide good enough learning strategies for them.

Continuity implies that well-established approaches like
Reinforcement Learning are not scalable in large state spaces
because of the infinite number of possible states that must be
handled [1]. On the other hand, the fact that the domains are non-
stationary means that, the robot state, the environment and the
objective may change in time, thus, there is a lack of a fixed
mapping between solution encoding and solution fitness, and this
problem is usually compounded with partial observability. It is in

this context where neuroevolution, that is, to evolve artificial
neural networks (ANN) using some type of evolutionary algo-
rithm, becomes a reference tool due to its robustness and
adaptability to dynamic environments [2] and in some types of
non-stationary tasks [3].

However, it is also necessary to consider the episodic nature of
the problem. The robot perceives episodes of sensorial informa-
tion to be modeled as one model intermingled with episodes of
sensorial information corresponding to other models. This implies
that whatever perceptual streams the robot receives could contain
information corresponding to different learning processes or
models that are intermingled (periodically or not), that is, learning
samples need not arise in an orderly and appropriate manner.
Some of these sequences of samples are related to different
sensorial or perceptual modalities and might not overlap in their
information content; others correspond to the same modalities
but should be assigned to different models.

The problem that arises is how to learn all of these different
models, the samples of which are perceived as partial sequences
that appear randomly intermingled with those of the others. Most
traditional learning algorithms fail in this task as they have mostly
been designed for learning a single model from sets of data that
correspond to that model and, at most, some noisy samples or
outliers within the training set. This problem becomes even more
interesting if we consider that it would be nice to be able to reuse

ARTICLE IN PRESS

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

0925-2312/$ - see front matter & 2008 Elsevier B.V. All rights reserved.

doi:10.1016/j.neucom.2008.10.022

� Corresponding author at: Escuela Politécnica Superior, Universidade da

Coruña, Mendizábal s/n, 15403 Ferrol (A Coruña), Spain.

Tel.: +34 981337400x3886; fax: +34 981337410.

E-mail addresses: fran@udc.es (F. Bellas), ronin@udc.es (J.A. Becerra),

richard@udc.es (R.J. Duro).

Neurocomputing 72 (2009) 2134–2145

www.sciencedirect.com/science/journal/neucom
www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2008.10.022
mailto:fran@udc.es
mailto:ronin@udc.es
mailto:richard@udc.es


some of the models, or at least parts of them, that have been
successful in previous tasks in order to produce models for more
complex tasks in an easier and more straightforward manner.

In this work, we propose considering the concept of promoters
and introns in neuroevolutionary algorithms. The concept of
promoter is not new, but until now it has been applied very few
times and only in terms of the ability to turn on or off any gene in
a genotypic representation, no matter the meaning and the
context of that gene. An example of this is the sGA [4–6] by
Dasgupta or the promoters introduced in NEAT [7,8]. In this paper
we go one step further and pair the concept of promoters with
that of functional introns in terms of turning on or off functional
units and not just any gene. In this work, introns are understood
as functional units or gene sequences whose phenotypic expres-
sion is regulated by the promoters. This concept has been
implemented in an algorithm called promoter based genetic
algorithm (PBGA) that uses a genotypic representation with a set
of features that allows for an intrinsic memory in the sense that
functional parts of the ANNs are preserved in the individuals
through the generations. With this representation a self-regulated
evolutionary mechanism is obtained that stores previously
learned information without explicit knowledge about the
number or type of target functions or models.

The rest of the paper is structured as follows: Section 2
formally presents the domain of the problem. Section 3 introduces
the concepts of intron and promoter and how they are
implemented in the PBGA. Section 4 is devoted to the application
results and to comparing this approach, as implemented in the
PBGA, with other neurovolutionary algorithms in regards to this
particular type of problem. Finally, Section 5 presents some
conclusions.

2. Background

Neuroevolution is the artificial evolution of neural networks
through evolutionary algorithms and has shown to be a very
powerful technique for learning in non-stationary problems [2,9].
Evolution has been applied to ANNs at three different levels:
connection weights, architectures and learning rules. Typical
approaches, where the architecture is fixed and evolution
searches the space of connection weights, have been successfully
applied in the last decade for solving very complex problems [10]
but, recently, several articles [7,11] have argued that this approach
limits the functionality of the ANN. As a consequence, several
researchers have proposed different algorithms that evolve both
the connection weights and the architecture of the ANN [2,7,11].

Some of the most relevant neuroevolution methods presented
in last few years are SANE [12], a cooperative coevolutionary
algorithm that evolves a population of neurons instead of
complete networks; ESP [10], similar to SANE but allocating a
separate population for each of the units in the network, where
each neuron can only be recombined with members of its own
subpopulation; and NEAT [7], nowadays probably the most widely
used neuroevolutionary algorithm, which can evolve networks of
unbounded complexity from a minimal starting point and that is
based on three fundamental principles: employing a principled
method of crossover of different topologies, protecting structural
innovation through speciation, and incrementally growing net-
works from a minimal structure [8].

Initially, most of the work on testing and benchmarking
evolutionary algorithms found in the literature was carried out
on stationary problems through either linear or non-linear control
benchmarks like the pole balancing problem. The last decade,
however, has seen an increase in the application of evolutionary
algorithms to non-stationary problems. Most of this work was

focused on optimization problems and using typical benchmarks
for non-stationary optimization such as Osmera’s dynamic
problems [13] or the dynamic Knapsack problem [14].

The application field of the work presented in this paper is not
directly optimization but learning. As established by Yao in [2],
‘‘learning is different from optimization because we want the
learned system to have best generalization, which is different
from minimizing an error function on a training dataset’’. In
particular, the objective is to consider learning in non-stationary
problems.

Thus, to formalize and frame the application domain of this
work we will resort to the formalism in Trojanowsky0s work [3] for
delimiting the scope of non-stationary optimization problems and
extend it to learning problems in terms of the types of changes
that may take place in the objective function. This way, real-world
learning problems can be, in general, modeled by:

MðPÞ ¼ ðD; F;CÞ

Meaning that a model M of a problem P can be expressed by
defining the variables of the problem and their domains (D), the
objective function to be learned (F) and a set of constraints that
must be satisfied (C).

In a general non-stationary problem these three elements D, F

and C, can change over time. The constraints of the problem C may
vary in time because solutions that were acceptable in a given
instant of time, become unacceptable. For a detailed reference in
dynamic constraint optimization problems see [15]. On the other
hand, D could change if the domains of the variables are modified
or if the number of dimensions of the search space changes.
Finally, changes in the objective function to be learnt may occur
with time either because the function is intrinsically time
dependent or, in the case of robotic systems, because the robot
moves around or changes tasks and this implies a different F.

In this paper, which initially considers the problem of robot
learning in non-stationary problems, we will leave aside con-
straints and we will consider that the robot has an unchanging set
of sensors and actuators (D does not change). Thus, we are trying
to learn in real environments through models of robot-environ-
ment interaction and all that is clear is what sensor and what
actuators the system has, but it is not clear for each task or
learning process which of these are necessary or what is the real
target to be learnt in each case. This implies dealing with changes
in the objective function F, the most typical case in real-world
learning in robotics, referenced in general as non-stationary
problems.

In this sense, there are different types of changes of F that may
occur in time [3]:

1. Random changes: where the next change in F does not depend
on the previous one. This usually leads to the learning of
different problems. It is the case where two streams of data
corresponding to different models are intermingled and occurs
when, for example, a robot is exploring an unknown dynamic
environment.

2. Non-random non predictable changes: the changes in F are not
random but they are too complex to predict. This is another
typical situation in robotics where the types of different
environments and/or tasks are limited but the robot cannot
predict the next one it will be faced with.

3. Predictable changes: these are changes that may be predicted
and they come in two flavours: cyclical and non cyclical. This
situation is possible in real-world robotics, and would make
life much easier, but it is not typical.

Furthermore, the changes in the objective function can be
continuous (adiabatic) or discrete. For the former case, several

ARTICLE IN PRESS

F. Bellas et al. / Neurocomputing 72 (2009) 2134–2145 2135



Download English Version:

https://daneshyari.com/en/article/410517

Download Persian Version:

https://daneshyari.com/article/410517

Daneshyari.com

https://daneshyari.com/en/article/410517
https://daneshyari.com/article/410517
https://daneshyari.com

