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a b s t r a c t

We propose an unsupervised segmentation algorithm for magnetic resonance images (MRI) endowed

with a parametric intensity inhomogeneity (IIH) correction schema and the on-line estimation of the

image model intensity class means. The paper includes an extensive experimentation that shows that

the algorithm is robust in the sense that it converges to good image segmentations despite the initial

estimation of the image model intensity class means. The algorithm is, therefore, highly automatic

requiring no interactive tuning to obtain good image segmentations, an appealing property in clinical

environments. The IIH field and intensity class means estimation consists of the gradient descent of the

restoration error of the intensity corrected image. Our algorithm does not work on the logarithmic

transformation of the image, thus allowing for the explicit distinction between the smooth

multiplicative field and the independent and identically distributed additive noise at each image voxel.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

Magnetic resonance images (MRI) allows to visualize with
great contrast the soft tissues in the body and has revolutionized
the capacity to diagnose the pathologies that affect them [1]. It is
based on the phenomenon known as nuclear magnetic resonance
(NMR). The image results from the aggregated measurements
of the tissue composition at the molecular level. MRI are expected
to be piecewise constant except for partial volume effects in the
tissue boundaries and the additive noise. Thus, once the expected
intensities of each tissue are known, we can built up a good
approximation to the optimal Bayesian classifier of minimum
classification error assuming that the intensity distribution is a
mixture of Gaussians whose means are the tissue expected
intensities, to perform the image segmentation task. However,
several imaging conditions introduce an additional multiplicative
noise factor, referred to as the intensity inhomogeneity (IIH) field
in the literature. The sources of IIH are generally divided in two
groups [2]: (a) related to properties of the MRI device such as
static field inhomogeneity, radio frequency signal energy spatial
distribution and others. (b) Related to the imaged object itself
such as the specific magnetic permeability and dielectric proper-
ties of the imaged object.

A broad taxonomy of MRI IIH correction algorithms divides
them between parametric and non-parametric algorithms. The

first ones use a parametric model of the IIH field [3–5]. The non-
parametric algorithms [6–9] perform a non-parametric estimation
of the IIH bias, usually, a smoothing of the restored image
classification residuals.

From the point of view of the estimation approach, the two
approaches which have produced the greater number of works
devoted to this issue are the Bayesian image processing algo-
rithms and the fuzzy clustering. Bayesian algorithms [4,7,9–11]
perform the maximum A posteriori (MAP) estimation of either the
IIH field or the classification image, or both. The approach needs
the formulation of an a priori model of the images and/or the
inhomogeneity field probability density, and the conditional
probability density of the observed image. The probability density
of the observed image conditioned to the voxel classification
and the inhomogeneity field is usually assumed to be Gaussian.
The a priori model of the MRI images is sometimes specified by a
Markov random field (MRF) that formalizes the smoothness
constraints on the image classification [4,7]. In [9,10] modeling
the bias as a Gaussian distributed random vector leads to the
Expectation Maximization estimation algorithm of the inhomo-
geneity field. The Hidden MRF proposed in [11] is essentially
identical to the MRF a priori probability density model of [7].

Fuzzy clustering algorithms [6,12,13] perform the estimation of
the image classification minimizing an objective function given by
the voxel quantization error weighted by the fuzzy membership
coefficients. The algorithms estimate the membership coeffi-
cients, the intensity class means and the IIH bias through this
minimization process.

We have been previously working on parametric approaches to
IIH modeling, estimation and correction, following the approach
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[3,5] of modeling the IIH field with 2D or 3D Legendre
polynomials. In [14] we did propose a gradient descent algorithm
of the restoration error of the image corrected with an estimation
of a parametric IIH bias. The error function gradient is formulated
relative to the IIH field model parameters. In this paper, is also
formulated the error function gradient relative to the tissue
intensity class means and we explore the robust response of the
algorithm to random initial mean values. Uncertainty about the
correct mean class intensities can be due to the variations on
the imaging pulse sequence parameters or to the change from one
machine to another. A robust segmentation algorithm able to
obtain useful estimations of the class means is a needed step to
obtain more automated segmentation procedures.

The image model and the algorithm is described in Section 2.
Experimental results on simulated brain MRI volumes are
presented in Section 3. In Section 4 we discuss the relationship
of the algorithm with precedent algorithms. Finally, conclusions
and further work are presented in Section 5.

2. Description of the algorithm

We will denote y ¼ ðyi; i 2 IÞ the observed image and x ¼ ðxi; i 2

I; xi 2 OÞ the classification image, where i 2 I � N3 is the voxel site
in the discrete lattice of the image support for 3D images,
and O ¼ fo1; . . . ;ocg is the set of tissue classes in the image. The
assumed image formation model is the following one:

yi ¼ bi � ri þ Zi, (1)

where bi is the multiplicative noise due to the IIH, ri is the clean
signal associated with the true voxel class xi and Zi is the additive
noise. In MRI we have the additional restriction that the
reflectance values belong to a discrete (small) set, G ¼
fmo1

; . . . ;moc
g, so that ri ¼ mxi

. Each mo is the signal intensity
mean value associated with a homogeneous tissue.1

Definition 1. The robust MRI segmentation and IIH correction
problem is the problem of estimating the image segmentation x,
the values of the intensity class means G, and the IIH multi-
plicative field b ¼ ðbi; i 2 IÞ from y.

2.1. The GradClassLeg algorithm

We call GradClassLeg [14] our own proposition of an IIH
correction and voxel classification algorithm according to its
definition as the Gradient descent of Classified images corrected
by products of Legendre polynomials. We assume that IIH field
model is a linear combination of 3D products of Legendre
polynomials [3,5] given by

biðpÞ ¼
Xm
j¼0

Xm�j

k¼0

Xm�k�j

l¼0

pjklPjðixÞPkðiyÞPlðizÞ, (2)

where i ¼ ðix; iy; izÞ and Pkð:Þ is a discretization of the Legendre
polynomial of degree k that is consistent with the image size in
each dimension, and p ¼ fpjklg is the vector of the linear
combination coefficients. The expression in Eq. (2) takes into
account the symmetries in the composition of the bias, assuming
that the volume discretization is identical in each spatial
dimension. Then number of parameters that compose p ¼ fpjklg

is n ¼ ðmþ 1Þððmþ 2Þ=2Þððmþ 3Þ=3Þ. Given an IIH field estimation
b̂ we consider the image correction error relative to the intensity

class means as the objective function

eðp;GÞ ¼
X
i2I

yibbiðpÞ
� mxi

 !2

. (3)

That is, we compute the restoration error as the difference
between the predicted intensity associated with the tissue class
and the observed intensity after bias correction.

GradClassLeg is a gradient descent algorithm of this error
function on the vector of parameters p of the IIH field model

ptþ1 ¼ pt þ ap
trpeðp;GÞ, (4)

and on the intensity class means

Gtþ1 ¼ Gt þ aG
t rCeðp;GÞ. (5)

Eq. (4) gives the estimation p̂ of the IIH field model parameters
starting from a random initial model, Eq. (5) gives the estimation
Ĝ of the intensity class means, starting either from a random
initial set of values or from a good guess. The IIH field parameter
gradient vector in Eq. (4) is a vector rpeðp;GÞ ¼ fðq=qpjklÞeðp;GÞg,
where each of its components is of the form

q
qpjkl

eðp;GÞ ¼
X
i2I

yibbiðpÞ
� bmbxi

 !
�yiPjðixÞPkðiyÞPlðizÞbb2

i ðpÞ
, (6)

where bxi ¼ argminofyi=
bbiðpÞ � mog is the estimation of the

classification of each voxel based on the current estimation of
the class intensity means. The intensity class means gradient
vector in Eq. (5) is a vector rCeðp;GÞ ¼ fðq=qmoÞeðp;GÞg where
each of its components is of the form

q
qmo

eðp; IÞ ¼
X

i2Ijbxi¼o

�
1

2

yibbiðpÞ
� bmo

 !
. (7)

3. Computational experiment results

The experimental data is composed of simulated brain MRI
volumes [15] obtained from the BrainWeb Internet site [16] at the
McConnell Brain Imaging Center of the Montreal Neurological
Institute, McGill University. The advantage of working with the
simulated volume is that it is possible to compute the classifica-
tion accuracy relative to the ground truth classes effectively
defined in the generation model. There are available simulated
brain MRI volumes corrupted with synthetic IIH fields with
magnitude 20% and 40% of the original clean image. For short we
will call them 20% and 40% IIH volumes. Using the voxel class
information provided in the site we have masked out the pixels
not belonging to the three classes of interest: white matter (WM),
gray matter (GM), and cerebrospinal fluid (CSF). We have also
downsampled the volume to allow for extensive experiments in a
reasonable time frame. The GradClassLeg parameters are set to
ap ¼ 0:01, aG ¼ 0:1, and the maximum number of iterations
allowed is 100. Initial IIH field parameter vector value p̂ is set
to zero. The initial intensity class means Ĝ are generated
with uniform probability in the interval ½0;100� and ordered in
ascendent order to preserve the meaning of the intensity classes
for the purposes of visualization and computation of validation
indices. The natural ascending order of intensities is CSF, GM and
WM. If this order corresponds to ascending number of class, the
visualization will not need further labeling neither for the human
inspection nor for the computation of the Tanimoto coefficient.

To give a quantitative evaluation of GradClassLeg we have
computed the Tanimoto (also known as Kappa or Dace) coeffi-
cient, as defined in [4,13], for the CSF, GM and WM tissue classes.
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1 Obviously the existence of such a thing as an homogeneous tissue is

dependent on the imaging resolution, and always a source of critical debate.
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