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a b s t r a c t

This paper presents ensemble approaches in single-layered complex-valued neural network (CVNN) to

solve real-valued classification problems. Each component CVNN of an ensemble uses a recently

proposed activation function for its complex-valued neurons (CVNs). A gradient-descent based learning

algorithm was used to train the component CVNNs. We applied two ensemble methods, negative

correlation learning and bagging, to create the ensembles. Experimental results on a number of real-

world benchmark problems showed a substantial performance improvement of the ensembles over the

individual single-layered CVNN classifiers. Furthermore, the generalization performances were nearly

equivalent to those obtained by the ensembles of real-valued multilayer neural networks.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

Complex numbers are inevitable from both the theoretical and
application perspectives. In order to process such information by
artificial neural networks, researchers have developed various
complex-valued network (CVNN) models, such as feed-forward
and recurrent CVNNs [11,12,21], complex-valued self-organizing
map [6], and complex-valued associative memories [14,20].
Recent developments are compiled in [7]. It is very natural that
the CVNN would find its applications on the areas, such as
telecommunications, speech recognition, image processing, and
others, where data to be processed are complex-valued. However,
some researchers recently have also applied CVNN to real-valued
classification problems by representing and solving the problems
in the complex domain.

Researchers have investigated and found that a complex-
valued neuron (CVN) could achieve better classification ability
than a real-valued neuron (RVN). One of the earlier works [19]
studied the discrimination ability of a complex perceptron on
Boolean functions up to four inputs. It was shown that the
complex perceptron could achieve twice the discrimination ability
of a real perceptron. In [22], the real-valued inputs and the class

labels were encoded by complex numbers, and then were
processed by a CVN to solve the XOR and the symmetry detection
problem. In [17], real-valued inputs were encoded by the phases
of unity magnitude complex numbers. Depending on the
magnitude of the CVN’s output, the class label of an input pattern
was determined. The CVN could achieve an improvement of 135%
over an RVN for the three-input Boolean functions.

There has been another recent approach that used multilayer
feed-forward architecture of multi-valued neurons [1]. The
approach also encoded the inputs by the phases of unity
magnitude complex numbers, but the class labels were encoded
by the roots of unity in the complex plane. They showed that
their feed-forward multilayer network could successfully solve
the parity n (2pnp9) problem and the two spirals problem,
and could perform better in the ‘‘sonar’’ benchmark and the
Mackey–Glass time series prediction problems.

Most of the aforementioned approaches, however, have some
shortcomings. The CVN models of [19] and [22], for example,
require careful settings of the target outputs ({0, 1} in [19] and {1,
0, 1+i, i} in [22]) for different classes. Choosing an arbitrary output
encoding scheme (0 ¼ class A and 1 ¼ class B, or the reverse
setting) will not work for some problems since it was reported in
[19] that the CVN could not realize several three-input Boolean
functions, while the complementary functions were realized.
Assigning output values to different classes is even more
complicated for the CVN model of [22]. The same problem exists
in [17]. Moreover, the learning algorithm of the CVN [17] may
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suffer from instability due to a reciprocal of derivative, namely
when the derivative approaches to zero.

In order to minimize the shortcomings, we proposed a new
class of activation functions [2], whose role is similar to the
conventional RVN in the classification tasks. The functions
combine the real and imaginary part of the complex numbers,
and map complex values into bounded real values. Due to the
differentiability of the activation functions, a gradient-descent
learning algorithm can be easily derived (see [2] for the learning
algorithm). We showed that a CVN with these activation functions
could successfully solve several Boolean classification problems
(including linear and nonlinear problems). We further studied the
generalization ability of single-layered CVNN on several real-
world multiclass problems, and showed that the performance was
comparable to that of the multilayer real-valued neural networks
(RVNNs).

It should be mentioned that a CVN or a single-layered CVNN
(only one layer of computing neurons, each representing one
class) cannot match all possible problems’ complexity because of
the fixed structure (determined by the number of inputs and
number of classes). To improve the performance, one possibility is
to use multiple layers of neurons as was done in [1]. However, it is
well known that an ensemble of classifiers can achieve better
classification ability than that of an individual classifier, provided
that the individual classifiers do not make error on the same part
of the data [24].

In this study, therefore, we investigate the ensemble methods
in the single-layered CVNNs that were developed in our earlier
work [2]. Among the ensemble creation methods, we examined
two methods, negative correlation learning (NCL) [15] and bagging

[3]. The former is an explicit method, while the latter is an implicit
method [4].

We show here that the ensemble methods can enhance the
performance of single-layered CVNNs to a considerable extent.
Furthermore, experimental results on various real-world bench-
mark problems show a comparable generalization performance of
the single-layered CVNN ensembles to that of the multilayer
RVNN ensembles.

It is noteworthy that any ensemble methods can be easily
applied to our CVN model due to its gradient based learning rule.
For example, the NCL requires each member in the ensemble to be
trained with gradient-descent based learning [15]. So it is difficult
to apply the NCL to the CVN models which cannot be trained with
a gradient based learning rule (e.g., the CVN model of [1]).

The remainder of the paper is organized as follows. In Section 2,
we briefly discuss the CVN model used in the ensembles of this
study, along with the classification ability of a single CVN on some
Boolean problems. Two methods for creating the ensembles of
single-layered CVNNs, i.e., NCL and bagging, are discussed in
Section 3. Experimental results on a number of real-world
benchmark problems are presented in Section 4. Finally, we give
our concluding remarks in Section 5.

2. CVN model and its classification ability

This section briefly discusses the CVN model and its classifica-
tion ability, which we presented in our earlier work [2]. The
discussion includes the representation of real-valued input data to
a CVN, the role of the activation function, and the classification
ability of a CVN on some Boolean problems.

2.1. Input data representation

To present complex-valued information to a CVN, we encoded
the real-valued data by the phases, between 0 and p, of the unity

magnitude complex numbers. For example, if a real-valued
number xA[a, b], where a, bAR, then the corresponding complex
number z ¼ eipðx�aÞ=ðb�aÞ, where i ¼

ffiffiffiffiffiffiffi
�1
p

. Clearly, in this represen-
tation, when the real-valued variable x moves along a line from a

to b, the corresponding complex variable z moves over the upper
half of a unit circle on the complex plane. In order to process the
Boolean data, the values TRUE and FALSE were represented by eip

and ei0, respectively.

2.2. Activation function

Our motivation for designing the activation function came
from the role of the activation function in a real-valued output
neuron for the classification tasks. The neuron has essentially two
functional parts, an aggregation part and an activation part.
The aggregation part maps a multidimensional input into a one
dimensional output by multiplying each of the inputs to the
neuron by the connection weights and then by summing up
the weighted inputs. The other part, i.e., activation function does a
threshold operation on the output given by the aggregator. As for
instance, consider a threshold function given by

yðvÞ ¼
class A; if vX0

class B; otherwise;

(

where v ¼ wTx+b, w and x being the weight and the input vectors,
and b is the bias of the neuron. Clearly, the threshold function
divides its one dimensional domain into two disjoint parts; each
part denotes one of the two classes.

Thus the role of an activation function, in a real-valued output
neuron, is to divide the function’s domain (defined by the output
of the aggregator) into disjoint sets or regions for representing the
corresponding classes. Hence forward, we call the output of the
aggregator part as the net-input of a neuron, and the domain of an
activation function as the net-input space of the neuron.

Motivated by the role of an activation function in a real-valued
output neuron, we formulated a family of activation functions for
CVN in [2]. The functions map complex-valued net-inputs into
bounded real-values by combining the real and imaginary parts of
the net-inputs. The purpose of such mapping is to divide the net-
input space into different regions to represent the classes.

Fig. 1 shows one of the functions which we have used in this
study of the ensembles. The function maps complex-values into
bounded real values and has the form of f C!Rðuþ ivÞ ¼ ðf RðuÞ �

f RðvÞÞ
2 where fR(x) ¼ 1/(1+e�x), u, v, xAR, and i ¼

ffiffiffiffiffiffiffi
�1
p

. As can be
seen from Fig. 1, the function saturates in four regions, R1, R2, R3,
and R4. Among the regions, R1 and R3 denote one class, while R2

and R4 denote the other class. Note that the function is
differentiable with respect to real and imaginary part of the net-
input individually. Since the cost function (mean squared error) to
be minimized is real-valued, this kind of differentiability is
sufficient to derive a gradient-descent based learning algorithm
by considering the real and imaginary parts of the weight
parameters individually. See [2] and also the Section 3.1 for the
details of the learning algorithm.

Liouville’s theorem states that there is no complex-valued
function which is bounded and differentiable in the entire
complex domain except the constant. We can avoid this constraint
by combining the real and imaginary part of the net-input
meaningfully for the classification tasks, and this was our main
objective of designing the activation functions.

2.3. Classification ability of a CVN

We studied the classification ability of a CVN with the new
activation functions on several Boolean problems in [2]. Here we
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