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a b s t r a c t

This paper proposes a recurrent wavelet-based neuro-fuzzy system (RWNFS) with a reinforcement

group cooperation-based symbiotic evolution (R-GCSE) for solving various control problems. The

R-GCSE is different from the traditional symbiotic evolution. In the R-GCSE method, a population is

divided to several groups. Each group formed by a set of chromosomes represents a fuzzy rule and

cooperates with other groups to generate better chromosomes by using the proposed elite-based

compensation crossover strategy (ECCS). In this paper, the proposed R-GCSE is used to evaluate

numerical control problems. The performance of the R-GCSE in the simulations is excellent compared

with other existing models.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, fuzzy logic or artificial neural networks used to
solve control problems have become a popular research topic
[1–10]. The reason is that classical control theory usually requires
a mathematical model for designing controllers. The inaccuracy of
mathematical modeling of plants usually degrades the perfor-
mance of the controllers, especially for nonlinear and complex
control problems [11–14]. Fuzzy logic has the ability to express
the ambiguity of human thinking and to translate expert knowl-
edge into computable numerical data.

A fuzzy system consists of a set of fuzzy IF–THEN rules that
describe the input–output mapping relationship of networks.
Obviously, it is difficult for human experts to examine all the
input-output data from a complex system to find proper rules for
a fuzzy system. To cope with this difficulty, several approaches
used to generate the fuzzy IF–THEN rules from numerical data
have been proposed [2,3,6]. These methods were developed for
supervised learning; i.e., the correct ‘‘target’’ output values are
given for each input pattern to guide the learning of the network.
However, most of the supervised learning algorithms for neural
fuzzy networks require precise training data in order to tune the
networks for various applications. For some real world applica-
tions, precise training data are usually difficult and expensive, if

not impossible, to obtain. For this reason, there has been a
growing interest in reinforcement learning algorithms for neural
controller [15–18] or fuzzy [19–21] design.

In designing a fuzzy controller, adjusting the required para-
meters is important. To do this, back-propagation (BP) training
was used in [3,6–8]. It is a powerful training technique that can be
applied to networks with a forward structure. Since the steepest
descent technique is used in BP training to minimize the error
function, the algorithms may reach the local minima very fast and
never find the global solution. To solve these problems, several
evolutionary algorithms, such as genetic algorithm (GA) [22],
genetic programming [23], evolutionary programming [24], and
evolution strategies [25], have recently been proposed. They are
parallel and global search techniques. Because they simulta-
neously evaluate many points in the search space, they are more
likely to converge toward the global solution. For this reason,
evolutionary methods, which are used for training fuzzy models,
have become an important field.

The evolutionary fuzzy model generates a fuzzy system
automatically by incorporating evolutionary learning procedures
[26–33]. The most well-known evolutionary learning procedure is
GAs. Several genetic fuzzy models have been proposed [26–31]. In
[26], Karr applied GAs to design the membership functions of a fuzzy
controller with its fuzzy rule set being assigned in advance. Since the
membership functions and rule sets are co-dependent, simultaneous
design of these two approaches is a more appropriate methodology.

Based on this concept, many researchers have applied GAs to
optimize both the parameters of the membership functions and
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the rule sets [27–29]. Lin and Jou [30] proposed GA-based fuzzy
reinforcement learning to control magnetic bearing systems.
Juang et al. [31] proposed using genetic reinforcement learning
to design fuzzy controllers. The GA adopted in [31] was based on
traditional symbiotic evolution which, when applied to fuzzy
controller design, complements the local mapping property
of a fuzzy rule. In [32] Tang proposed a hierarchical genetic
algorithm. The hierarchical GA enables the optimization of the
fuzzy system design for a particular application. Juang [33]
proposed the combination of online clustering and Q-value based
GA for reinforcement fuzzy system (CQGAF) to simultaneously
design the number of fuzzy rules and the free parameters in a
fuzzy system.

However, these approaches encounter one or more of the
following major problems: (1) all the fuzzy rules are encoded into
one chromosome; (2) the population cannot evaluate each fuzzy
rule locally.

Recently, Gomez and Schmidhuber [34,35] proposed solutions
for these problems. The proposed enforced sub-populations (ESP)
used sub-populations of neurons for the fitness evaluation and
overall control. As shown in [34,35], the sub-populations that are
used to evaluate the solution locally can obtain better perfor-
mance compared to systems of only one population which are
used to evaluate the solution.

As with [34,35], in this paper, a RWNFS with a reinforcement
group cooperation-based symbiotic evolution (R-GCSE) is pro-
posed for solving the problems mentioned above. In the proposed
R-GCSE, each chromosome represents only one fuzzy rule, and the
n-rules fuzzy system is constructed by selecting and combining
n chromosomes from several groups. The R-GCSE, which promotes
both cooperation and specialization, ensures diversity and
prevents a population from converging to suboptimal solutions.
In the R-GCSE, compared with normal symbiotic evolution, several
groups are in the population. Each group formed by a set of
chromosomes represents a fuzzy rule. Compared with [34,35] to
let the well-performing groups of individuals cooperate to create
better generations, an elite-based compensation crossover strat-
egy (ECCS) is proposed in this paper. In the ECCS, each group
cooperates to perform the crossover steps. Therefore, the better
chromosomes of each group will be selected to perform the
crossover steps in the next generation.

The advantages of the R-GCSE are summarized as follows: (1)
the R-GCSE uses group-based populations to evaluate the fuzzy
rule locally; (2) the R-GCSE uses the ECCS to allow better solutions
from different groups to cooperate in order to generate better
solutions in the next generation; (3) it indeed performs better
performance and converges more quickly than some traditional
genetic methods.

This paper is organized as follows. In Section 2, the RWNFS is
introduced. In Section 3, the proposed group cooperation-based
symbiotic evolution (GCSE) is described. In Section 4, the reinforce-
ment group cooperation-based symbiotic evolution (R-GCSE) using
for constructing the RWNFS model is introduced. In Section 5, the
simulation results are presented. The conclusions are summarized
in the last section.

2. Structure of a RWNFS

In this section, the structure of RWNFS shown in Fig. 1 will be
introduced. For TSK-type fuzzy networks [1,5], the consequence of
each rule is a function input linguistic variable. A widely adopted
function is a linear combination of input variables plus a constant
term. This study adopts a nonlinear combination of input
variables (i.e., wavelet neural network (WNN)). The advantages
of the WNN are as follows: (1) its ability to find ‘‘universal

approximation’’; (2) an explicit link between the wavelet trans-
form and the network coefficient is completed, and an initial
guess of network parameters can be derived by the decomposition
of a wavelet formula; (3) it probably obtains the same approx-
imation performance as a smaller size network; in addition,
wavelet networks are optimal approximators since the smallest
number of bits are required to obtain an arbitrary precision [36].

In RWNFS, each fuzzy rule corresponds to a sub-WNN which
consists of single-scaling wavelets [37]. The non-orthogonal and
compact wavelet functions used as the node function (wavelet
bases) are adopted in this paper. The purpose of introducing a
fuzzy model into WNN is to improve the accuracy of function
approximation based on the dilation and translation parameters
of wavelets while not increasing the number of wavelet bases. A
RWNFS is composed of fuzzy rules that can be presented in the
following general form:

Rj : If I1 is A1j and . . . Iij is Aij and . . . and Inj is Anj

Then ŷ
1
j ¼

XM
k¼1

w1
jkja:b ¼ w1

j1j0:0 þw1
j2j1:0 þw1

j3j1:1 . . .

and ŷ
2
j ¼

XM
k¼1

w2
jkja:b ¼ w2

j1j0:0 þw2
j2j1:0 þw2

j3j1:1 � � �

..

.
(1)

where Rj denotes the jth rule; (I1j,y, Iij,y,Inj) is the network input
pattern (x1,y, xi,y,xn) plus the temporal term for the linguistic
term of the precondition part Aj

¼ ðA1j; . . . ;Aij; . . . ;AnjÞ; the local
WNN model’s outputs ŷ

1
j and ŷ

2
j are calculated for outputs y1 and

y2 of rule Rj.
Next, the signal propagation is indicated, along with the

operation functions of the nodes in each layer. In the following
description, IðhÞi denotes the ith node’s input in the hth layer, and
OðhÞi denotes the ith node’s output in layer h.

In layer 1, nodes just transmit input signals to the next layer
directly, that is,

Oð1Þi ¼ Ið1Þi (2)

where Ið1Þi ¼ ðx1; . . . ; xi; . . . ; xnÞ. Each precondition part of the jth
rule Aj

¼ ðA1j; . . . ;Aij; . . . ;AnjÞ (a group of fuzzy sets) is described
here by a Gaussian-type membership function; that is, the
membership value specifying the degree of how an input value
belongs to a fuzzy set is determined in layer 2. The Gaussian
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Fig. 1. Schematic diagram of RWNFS model.

Y.-C. Hsu, S.-F. Lin / Neurocomputing 72 (2009) 2418–2432 2419



Download English Version:

https://daneshyari.com/en/article/410548

Download Persian Version:

https://daneshyari.com/article/410548

Daneshyari.com

https://daneshyari.com/en/article/410548
https://daneshyari.com/article/410548
https://daneshyari.com

