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a b s t r a c t

The need for homogeneous partitions, where all parts have the same distribution, is ubiquitous in

machine learning and in other fields of scientific studies. Especially when only few partitions can be

generated. In that case, validation sets need to be distributed the same way as training sets to get good

estimates of models’ complexities. And when standard data analysis tools cannot deal with too large

data sets, the analysis could be performed onto a smaller subset, as far as its homogeneity to the larger

one is good enough to get relevant results. However, pseudo-random generators may generate partitions

whose parts have very different distributions because the geometry of the data is ignored. In this work,

we propose an algorithm which deterministically generates partitions whose parts have empirically

greater homogeneity on average than parts arising from pseudo-random partitions. The data to partition

are seriated based on a nearest neighbor rule, and assigned to a part of the partition according to their

rank in this seriation. We demonstrate the efficiency of this algorithm on toys and real data sets. Since

this algorithm is deterministic, it also provides a way to make reproducible machine learning

experiments usually based on pseudo-random partitions.

& 2008 Elsevier B.V. All rights reserved.

1. Introduction

1.1. The need for homogeneous partitions

In machine learning and in many domains of scientific studies,
data sets need to be partitioned to get reliable estimates of some
statistics, either through training and validation sets or through
patient and control groups [12]; to save computation time
through the study of a sufficiently small subset of the entire set
[7]; or to perform opinion poles. In all these cases, it happens
eventually that averaging the estimates obtained over many
different partitions of the same data set is not possible, either
because it would exceed some time or money budget (getting
good estimates from huge data sets with some machine learning
model or acquiring the labels of all the data from human experts,
performing a census, etc.) or it is not physically feasible (giving
drug and placebo to the same patient because of different
partitions). Then if only one partition can be used, it should be
homogeneous, i.e. all its parts should have the same distribution,
in order to reduce bias of the estimated quantities. Usually,
practitioners either rely on simple random draws with equal
probability for each datum to generate such a partition or they
attempt to control the odds to get a partition with higher
homogeneity.

1.2. State of the art

Stratification [4] is a common way to bias randomness in favor
of homogeneous partitions. A partition is generated by hand
according to some variable, or automatically using vector
quantization (e.g. K-means), then data are selected at random
inside each stratum to get a part of the partition. However, there is
no general rule to obtain a good stratification.

Another way which has been recommended in a machine
learning context [6, p. 135] is similar to the accept–reject sampling
method: draw several random partitions, and keep the one which
minimizes the Kullback–Leibler (KL) divergence between the
density functions estimated on each part.1 Measuring homoge-
neity can also be carried out using two-sample tests [8]. However,
running such tests or building such density estimates is time
consuming (up to OðN3

Þ). So the accept–reject approach may need
many runs, and so, much time, with no insurance of getting
partitions with high homogeneity.

Another way to get homogeneous partitions is to pose the
partitioning problem as an optimization one and try to solve it
with some optimization method. For example in a simple local
search setting, a first partition is generated at random, and then
the elements of different parts are permuted so as to maximize
the homogeneity of the partition. So for a partition of N data in
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two parts with equal size, there are N=2 possible permutations
from the initial state (a binary vector with N bits assigning each
datum to one of the two parts), and the diameter of the search
space is N=2 (no more than N=2 permutations are needed to
pass from one state to any other). So reaching a local optimum
of the search space takes N2 times the complexity of the
homogeneity testing function. However, testing the homogeneity
is usually high (up to N3 if graph-based two-sample tests are used
[8]), leading to a OðN5

Þ suboptimal algorithm. Moreover, the size
of the space to explore is huge: CN=2

N ¼ N!=ðN=2Þ!ðN=2Þ! ways to
take N=2 elements out of a set of N, so there is a high probability
to get stuck into a local optimum, without knowing how far it is to
the global one.

Another example is the matched random sampling approach
devised in [3,12]. The graph non-bipartite matching (NBM)
algorithm of Greevy et al. [12] is designed for optimal pairing of
treatment and control patients in a medical context [17]. It is
based on pairing all the data so as to minimize the sum
of the distances within the pairs [10]. This problem is encoded
as a weighted graph matching problem, where pairs of vertices
(the data) have to minimize the total weight of the edges
connecting them. It may provide partitions in two parts with
equal size, by assigning randomly each datum of a pair to a
different part. The NBM solves a specific instance of the general

maximum weight graph [15] problem, and algorithms designed to
solve it could be used to find partitions with more than two parts.
The complexity of optimal algorithms scales in OðjEj jV j1=2Þ [15]
where jEj and jV j ¼ N are, respectively, the number of edges
and vertices in the graph. However, if the complete graph of the
data is used, then jEj ¼ NðN þ 1Þ=2 and so complexity scales in
OðN5=2

Þ. While if a more reasonable proximity graph is built
such as the K-nearest neighbor graph (KNNG), or the Gabriel
graph (GG) [9], number of edges scales in OðNÞ but the graph
building process itself scales in OðN2

Þ (KNNG) or OðN3
Þ (GG). At

last, the objective function optimized in these approaches has not
been clearly related to an overall homogeneity measure of the
partition.

Our work follows yet another way, which is an attempt to build
incrementally an homogeneous partition. We propose a determi-
nistic algorithm designed to generate nearly homogeneous
partitions in two or more parts, with possibly unequal size of
their parts. This algorithm is a heuristic which experimentally
increases the homogeneity between the parts of the partition it
generates. It is based on seriating the data and subsequently
assigning them to each part of the partition according to their
rank in the seriation.

In the next section, we define a new divergence measure
between continuous pdf. Then we show that minimizing this
divergence and minimizing a Hausdorf-like distance between
finite samples drawn from these pdf are equivalent in the limit of
an infinite sample size at least for univariate densities and the
Euclidean metric. Then in Section 3, we propose a heuristic to
minimize this distance measure between finite samples, and
study its properties. Finally in Section 4 we demonstrate its
efficiency in getting homogeneous partitions on multivariate
artificial and real data sets.

2. Measuring homogeneity

2.1. A new divergence measure

Here we propose a new symmetric divergence measure
between two pdf. It exists several divergence measures [11]
intending to measure how far two pdf are from each other. Given
pdf p and q with the same support X, the KL divergence DKL is

given by

DKLðp; qÞ ¼

Z
X

pðxÞ log
pðxÞ

qðxÞ

� �
dx,

the Jensen–Shannon divergence is given by

DJS ¼
1

2
DKL p;

pþ q

2

� �
þ DKL q;

pþ q

2

� �� �

and the Renyi’s divergence is defined as

DRðp; qÞ ¼
1

a� 1
ln

Z
X
½pðxÞ�a½qðxÞ�1�a dx

� �
; aa1; a40

which corresponds to Bhattacharya’s divergence for a ¼ 1
2. The

main problem with these divergence measures is the need for a
functional form of the pdf. Here we propose the following
divergence measure:

Definition.

DHðp; qÞ ¼

Z
X

log
1

2

pðxÞ

qðxÞ
þ

qðxÞ

pðxÞ

� �� �
dx

We prove the following properties:

Property 1. 8p;q40;DHðp; qÞ ¼ DHðq; pÞ.

Property 2. 8p40;DHðp; pÞ ¼ 0.

Property 3. 8p; q40;DHðp
�; q�Þ ¼ min8p;q40ðDHðp; qÞÞ3p� ¼ q�.

Property 4. 8p; q40;DHðp; qÞX0.

Proofs are reported in the appendix. The triangular inequality is
not true in general, so DHðp; qÞ is not a true distance function
between pdf p and q, but it is a symmetric divergence measure
between these pdf.

2.2. A homogeneity criterion

Now we define a homogeneity criterion between finite data
sets and show that minimizing this criterion for points on the real
line is equivalent to minimizing the divergence measure DH

defined above.
It is expected that two parts of a data set have the same

distribution if each datum in one part is close enough to a datum
in the other one. The closer the points the closer the distribution
densities. At best, if both parts are exactly superimposed (case of a
data set where data are replicated twice, each one in a different
part), then distances between data of one part and their nearest
neighbor (their clone) in the other part are zeros. Obviously, both
parts being identical have the same distribution.

So, given a set of data S ¼ ðx1; . . . ; xNÞ 2 ðR
D
Þ
N , and two subsets

P1 � S and P2 � S, we compute the homogeneity measure
between P1 and P2 as the sum of the distances between each
datum of one set and its nearest datum in the other set:

HdðP1; P2Þ ¼
X
u2P1

min
v2P2

ðdðu;vÞÞ þ
X
v2P2

min
u2P1

ðdðv;uÞÞ,

where d is the distance measure. One can see that if we replace all
the sums by the max operator, HdðP1; P2Þ corresponds to the
Hausdorff distance wrt d, between the finite sets P1 and P2.

Now we show that Hd is relevant to measure the homogeneity
between two sets on the real line wrt the Euclidean metric.
Indeed, we show that finding sets P1 and P2 which minimize
HdðP1; P2Þ is equivalent to finding sets P1 and P2 whose respective
densities p1 and p2 minimize the divergence DHðp1;p2Þ.

Let S 2 ðRÞN be a set of N points on the real line, with even N.
Let P1 and P2 be two subsets partitioning S such that
jP1j ¼ jP2j ¼ N=2, P1 [ P2 ¼ S and P1 \ P2 ¼ ;. Let p1 and p2 be
absolutely continuous probability measures with common
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