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a b s t r a c t

In this paper, a new method for the identification of nonlinear systems with time-varying parameters

using a sliding-neural network observer is investigated. The proof of the finite-time convergence of the

estimates to their true values is achieved using Lyapunov arguments and sliding mode theories.

An application example illustrated the effectiveness of the approach and the obtained results show high

convergence rate and very satisfactory parameter estimation accuracy. The computing results under

noisy condition also demonstrate that good state and parameter estimation can be achieved despite the

disturbance (noise) in the system. The reduced number of hidden units and the small transient period

demonstrate that the proposed method can be easily implementable in real-time.

& 2008 Elsevier B.V. All rights reserved.

1. Introduction

This paper is devoted to parameter identification for a large
class of nonlinear systems using a sliding mode neural observer. In
many practical cases, system parameters are unknown and are
time varying. In linear systems, parameter estimation is often
achieved using the least square method [17]. The application of
the least square algorithm to the estimation of nonlinear system
parameters, usually requires the nonlinear model outputs to be
expressed linearly in terms of the unknown parameters. Unfortu-
nately, some nonlinear plants cannot be parameterized linearly.
The identification of nonlinear system parameters is also often
studied by using the combination of the least square technique
and the passivity approach [9]. However, in the latter approach,
the linearization of the nonlinear model around an equilibrium
point is required. Thus, this method may not provide successful
results for a wide range of operating points of the plant.

Recently, a robust identification and control algorithm with
time-varying parameter perturbations has been proposed in [1].
But the application of this method requires the nonlinear model
outputs to be expressed linearly in terms of the unknown

parameters. This motivated our previous works [7,2] where
parameter estimation methods based on the radial basis function
(RBF) neuronal predictor have been introduced.

Although different approaches have been developed [3–5,8,13]
for nonlinear system states estimation, only partial and quite
weak results have been obtained in terms of time-varying
function approximation and time-varying parameter estimation.
The state of the art concerning the estimation of the nonmeasur-
able states using artificial neural network (ANN) has been
presented in [7].

The main contribution of this paper is the extension of the
works proposed in [7,2]. In the latter approaches, the asymptotic
convergence was proved under some conditions. In this paper, the
convergence and the robustness properties of the previous results
are improved by using a sliding-neural observer and the extension
of the previous works to the cases where the state vector of the
nonlinear system is partially known is achieved. A new adaptive
law is also used to estimate the unknown bound of the error
between the neural network output and the output of the
nonlinear system. The proposed method is dedicated to parameter
estimation in the continuous time-domain for a large class of
nonlinear systems whose model outputs can be expressed as
linear or nonlinear combination of the unknown parameters. The
method proposed in this paper can be viewed as a step towards
the design of nonlinear systems time-varying parameter identi-
fication using sliding-neural network observer without using the
assumption that the inverse dynamics of the system is known.
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The remainder of the paper is organized as follows. In
Section 2, a sliding-neural observer based on the radial basis
function network (RBFN) is designed and the proof of the
convergence in finite time is achieved using Lyapunov and sliding
modes theories. The extension of the approach to the cases where
the state vector is not completely known is presented in Section 3
and an application example with some numerical simulations are
reported in Section 4. Finally some concluding remarks are given
in Section 5.

2. Sliding-neural observer for parameter identification

In this section, a modified version of the methods proposed in
[7,2] is presented and the convergence and robustness properties
are improved using a sliding-neural observer. The extension of the
previous works to the cases where the state vector of the
nonlinear system is partially known is also investigated.

2.1. Problem setting

Let us consider the following class of nonlinear systems:

_x ¼ f ðx; yðtÞ;uÞ, (1)

where f is a continuous function on a compact Of 2 R; x 2 Rn is
the state vector; u 2 Rm, mpn is the vector of the measurable
inputs and yðtÞ 2 Rp is the vector of the unknown time-varying
parameters which can be expressed as follows:

yiðtÞ ¼ yi;n þ DyiðtÞ with jDyiðtÞjpmi; i ¼ 1; . . . ; p. (2)

In (2), yi;n is the nominal value of yiðtÞ and mi are unknown positive
constants.

The following assumptions will be made until further notice.

(i) The components of the state vector x are measurable.
Therefore the state vector x is assumed to be available and
can be considered as the output vector of the nonlinear
system (1).

(ii) yðtÞ 2 Xy which is a compact set of Rp.
(iii) the system described by (1) is invertible in terms of the

unknown parameters yðtÞ in the sense of the work of [10].

Remark 1. Assumption (i) is not a restriction for the method
proposed in Section 2.2. It has been used to simplify the study in
this section. The cases where the state vector is not completely
known are discussed in Section 3.

Assumption (iii) means that, there exists a function g contin-

uous and bounded such that

yðtÞ ¼ gðx; _x;uÞ for 1pppn. (3)

In the general case, the function g contains the higher order
time-derivatives of the terms _x and u. Note that it is not possible
to use immediately Eq. (3) to estimate the unknown parameter
yðtÞ since the derivative state _x is not available.

By using Taylor formula, the system described by (1) can be
rewritten as follows:

_x ¼ f ðx; yn;uÞ þ Df ðx;u; tÞ, (4)

where

Df ðx;u; tÞ ¼

Z 1

0

qf

qa

����
ða¼ynþxDyðtÞÞ

DyðtÞdx (5)

is the uncertainty term due to the variation of the parameter yðtÞ.
The term f ðx; yn;uÞ is continuous on a compact X; thus it
can be approximated by an RBF neural network [4,5]. Therefore,

one can write

f ðx; yn;uÞ ¼ Cðw;w�Þ þ ef ðwÞ
or

f ðx; yðtÞ;uÞ ¼ Cðw;w�Þ þ ef ðwÞ þ Df ðx;u; tÞ

with

Ciðw;w�Þ ¼
XN

j¼1

w�ijfðkw� Cjk; njÞ, (6)

where fð�Þ denotes a nonlinear function; Cj and nj, j ¼ 1; . . . ;N are
the center and the width of the j-th hidden unit, respectively; N is
the number of the hidden nodes or RBF units; w� is the optimal
weight vector and satisfies kw�kpRo; w ¼ ðx;uÞT is the input
vector of the RBFN; ef ðwÞ is the optimal approximation error
tolerance, which is unknown and bounded 8w 2 X.

The term Df ðx;u; tÞ is time-varying and cannot be approxi-
mated by a static neural network. In the following analysis,
sliding robust terms will be used in the identification scheme
to compensate the effect of the uncertainty Df ðx;u; tÞ. The aim is to
realize or to approximate the underlying dynamics f ðx; yðtÞ;uÞ
using ANNs assuming that the terms ef ðwÞ and Df ðx;u; tÞ are
bounded by unknown positive constants.

2.2. Sliding-neural observer

In order to identify the time-varying parameters yðtÞ, let us
now consider the following observer:

_̂x ¼ Cðw; ŵÞ þ bðx; x̂; tÞ (7)

or

_̂xi ¼ biðx; x̂; tÞ þ
XN

j¼1

ŵijfðkw� Cjk; njÞ, (8)

where the term biðx; x̂; tÞ; i ¼ 1; . . . ;n are introduced in order to
improve the convergence of the neural network in the presence of
the uncertainty term Df ðx;u; tÞ. The RBF fð�Þ has the following
form:

fðZ; nÞ ¼ exp
�kZk2

2n2

� �
.

The center Cj and the width nj of the j-th hidden unit are chosen as
follows [6]:

nij ¼
wimax
� wimin

N
, (9)

Cij ¼ wimin
þ

2j� 1

2
nij, (10)

where wimin
and wimax

are the lower and upper bounds of the i-th
element of the RBF input vector w, respectively.

Remark 2. The selection of the center Cj and the width nj for
RBFN has significant effect on the performance of the algorithm.
In literature several strategies exist but one can distinguish two
main categories. The first one consists in simultaneously optimiz-
ing the center Cj, the width nj and the weights wij, by using for
example the well-known backpropagation algorithm. Unfortu-
nately, this approach may lead to the convergence of the
algorithm to the local minimum due to the slowly convergence
of the hidden layer (with nonlinear neurons) and the fast
convergence of the output layer (with linear neurons). The second
approach consists in optimizing or selecting initially the center
and the width before carrying out the adjustment of the weights.
Therefore, once the optimization or selection of the center and the
width is achieved, the learning of the weights is completely a
linear problem and is thus more easier to perform as compared to
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