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a b s t r a c t

This paper proposes a new algorithm for nonlinear dimensionality reduction. Our basic idea is to

explore and exploit the local geometry of the manifold with relative distance comparisons. All such

comparisons derived from local neighborhoods are enumerated to constrain the manifold to be learned.

The task is formulated as a problem of quadratically constrained quadratic programming (QCQP).

However, such a QCQP problem is not convex. We relax it to be a problem of semi-definite programming

(SDP), from which a globally optimal embedding is obtained. Experimental results illustrate the validity

of our algorithm.

& 2008 Elsevier B.V. All rights reserved.

1. Introduction

In many areas of natural and social sciences, one is often
confronted with intrinsically low-dimensional data points which
lie in a very high-dimensional observation space. An example
might be a set of images of an individual’s face observed under
different poses. If there are n� n grayscale pixels totally, then
each face image yields a data point in n2-dimensional space. But
the intrinsic dimensionality of the space of all these images only
equals to the number of the pose parameters. Reducing the
dimensionality of such data is needed in many applications,
ranging from image compression [34] to data visualization [27,4]
and other tasks including recognition [33,35], vision computing
[16,11], and so on [26,5]. Generally, the motivation behind
dimensionality reduction is to discover a lower-dimensional
structure in high-dimensional data without significant loss of
information. Linear methods, such as principal component
analysis (PCA) [12] and classical multidimensional scaling [6]
are popularly used to perform the task of dimensionality
reduction. Such linear methods are able to discover the lower-
dimensional structure of data lying on or nearly lying on a linear
space. However, in many cases lower-dimensional structure
hidden in the data is nonlinear and directly using those linear
methods may generate unsatisfactory results.

Recently, many nonlinear dimensionality reduction (NLDR)
algorithms [15] have been developed under the assumption that
the data points are sampled from an underlying manifold
embedded in a high-dimensional Euclidean space. The two well-
known algorithms are Isomap [25] and locally linear embedding
(LLE) [18]. Based on the multidimensional scaling algorithm,
Isomap attempts to preserve globally the geodesic distances
between any pair of data points. LLE tries to discover the nonlinear
structure by exploiting the local geometry of the data. Later,
different manifold learning algorithms have been proposed, such
as manifold charting [3], Laplacian eigenmap (LE) [1], Hessian LLE
(HLLE) [7], local tangent space alignment (LTSA) [36], maximum
variance unfolding (MVU) [29,28], conformal eigenmap [21], and
other extensive work [15,31,22,10,24,13,14], etc. Most NLDR
algorithms can be considered into a common framework of
thinking globally and fitting locally, in which the locally geometrical
information is collected together to obtain a global optimum [19].

Locally geometrical information of data is explored and
exploited in different ways. In LLE [18], each data point is linearly
reconstructed with its neighbors and such a linear representation
is maintained in a lower-dimensional space. LE calculates the
similarity of any pair of neighboring data points to define the
graph Laplacian [1]. HLLE, LTSA and LSE explore the local relations
between neighboring data points in tangent spaces. Local
coordinates are mapped, linearly [36,24] or nonlinearly [31], to
the global coordinate system with lower dimensionality. In
contrast, MVU [29,28] and conformal eigenmap [21] utilize the
locally geometrical relations in a straightforward way. In MVU,
Euclidean distances between neighboring data points are globally
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preserved in lower-dimensional space. Such an idea is extended in
conformal eigenmap by preserving angle information and similar
results can be obtained.

This paper uses relative distance comparisons to explore the
local geometrical relations between data points. As a kind of side
information, employing relative comparison is not a new idea in
machine learning. Actually it is used to learn distance metrics for
data clustering and classification with ‘‘A is more similar to B than

A is to C’’ [20,17]. In addition, as supervised information, such a
formulation is translated as ‘‘the distance from A to B is not greater

than that from A to C’’ in manifold alignment [32]. In this paper, all
such relative comparisons derived in each neighborhood on the
manifold are enumerated and maintained in lower-dimensional
manifold to be learned. The task is formulated as a problem of
quadratically constrained quadratic programming (QCQP) [2].
However, such an optimization problem is nonconvex. To remedy
this drawback, we perform a semi-definite slack and convert the
source QCQP problem to be a problem of semi-definite program-
ming (SDP) [2], in which a global embedding is finally obtained.

One advantage of relative distance comparison is that it can be
easily specified not only in the local neighborhoods but also in the
global region. This yields a mechanism to integrate prior knowl-
edge or supervised information into manifold learning [32].
Performances show that adding a few relative comparisons about
the global manifold structure may significantly change the
learned shape. In contrast, most manifold learning algorithms
could not be directly extended to integrate the global information
in such a straightforward way without changing the nature of the
optimization model.

In distance preserving framework [29,28],global structure can
also be specified with distances between non-neighboring data
points. However, supplying such distances is not an easy task. One
reason is that the values in equality constraints should be
carefully input to avoid conflicts between equalities. Another
reason is that geodesic distance or manifold distance should be
considered for the non-neighboring data points since the
commonly used Euclidean distance metric can only be suitable
for neighboring data points. On the one hand, calculating geodesic
distances usually needs much time. On the other hand, the
obtained geodesic distance may not reflect the true distance,
specially when the data are sparsely sampled from the manifold
or the topological structure of the manifold is not convex. Such
drawbacks can be easily avoided with relative comparisons.

The remainder of this paper is organized as follows: Section 2 will
develop the optimization model for NLDR problem. Section 3 will
discuss how to solve the model with SDP. The extension of the model
for using global relative distance comparisons is also presented in this
section. Section 4 gives the algorithm. We report the experimental
results in Section 5 and draw conclusions in Section 6.

2. The model

The NLDR problem can be formulated as follows. Given a set of
n scattered data points xi 2 R

m lying on a manifold M embedded

in a m-dimensional Euclidean space. The goal is to invert an
underlying generative model x ¼ f ðyÞ to find the corresponding
lower-dimensional parameters (embedding coordinates) yi 2 R

d

such that xi ¼ f ðyiÞ, that is, construct Y ¼ fyig
n
i¼1 from X ¼ fxig

n
i¼1.

Differing from those with locally linear reconstruction and
tangent space representation [18,7,36,31], here we use purely
geometrical representations to explore the relations between data
points.

For each data points xi 2 X ði ¼ 1; . . . ;nÞ, denote its neighbor-
hood by Ni, which contains k nearest neighbors of xi obtained
with Euclidean distance metric. Further let Ni ¼ fxij g

k
j¼1, in which

subscript ij stands for an index and ij 2 f1;2; . . . ;ng. Now we can
enumerate all the triples Si ¼ fði; ij; ikÞ jxij ;xik 2Nig and each
triple ði; ij; ikÞ corresponds to a relative distance comparison:

kxi � xijkpkxi � xikk (1)

Here k � k stands for the L2-norm. Eq. (1) indicates that the
distance from xi to xij is not greater than that from xi to xik . Such a
distance comparison reflects a weak geometry between data
points.

Now we hope such a relative comparison is also maintained in
lower-dimensional intrinsic space. It follows

kyi � yij
kpkyi � yik

k (2)

Obviously, only relative comparisons cannot yield a unique
solution. Additional constraints should be introduced to develop
the optimization model.

First, the lower-dimensional coordinates Y ¼ fyig
n
i¼1 should be

embedded into a definitely specified place. Such a place can be
selected near the coordinate origin:

Xn

i¼1

yi ¼ 0 (3)

Second, to avoid generating zero solutions, a distance guard
should be introduced. It can be selected as the minimum distance
among all the pairs of neighboring data points. Without loss of
generality, suppose x1 and x2 can give the minimum distance.
Then we have

ky1 � y2k ¼ c (4)

Here c equals to the distance from x1 to x2. Note that there only
exists a scaling difference if c is specified as any other positive
number. Therefore, we simply take c ¼ 1 in this paper.

Unfortunately, only satisfying the constraints in (2)–(4) can
still not generate a unique solution. Fig. 2 shows an example. In
Fig. 2(a) five source data points A, B, C, D and E are sampled from a
circle. This is a one-dimensional manifold with angle parameters
as the intrinsic parameters. Given the distance from A to B as a
distance guard, the line segments ‘‘ABCDE’’, ‘‘ABC1D1E1’’ and
‘‘ABC2D2E2’’ in Fig. 1(b) are all feasible solutions. Among those
feasible solutions, we select that with maximum variance since
with this solution the manifold is largely unfolded. This solution is
just the one as ‘‘ABCDE’’ in Fig. 1(b), which shows a perfect one-
dimensional embedding.
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Fig. 1. (a) Five source data points sampled from a circle; (b) feasible solutions satisfying the constraints in Eqs. (2)–(4).
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