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ABSTRACT

Interval regression analysis has been a useful tool for dealing with uncertain and imprecise data. Since
the available data often contain outliers, robust methods for interval regression analysis are necessary.
This paper proposes a genetic-algorithm-based method for determining two functional-link nets for
the robust nonlinear interval regression model: one for identifying the upper bound of data interval,
and the other for identifying the lower bound of data interval. To facilitate the inclusion of regular data
in the robust nonlinear interval regression model, in the fitness function, not only the cost function with
different weighting schemes but also the number of training data included in the interval model is taken
into account. As for resisting outliers, the effects of training data beyond or beneath the estimated data
interval on the determination of upper and lower bounds can be greatly reduced during the training
phase when these data are located in the rejection region. Simulation results demonstrate that the
proposed method performs well for contaminated data sets by resisting outliers and including all
regular data in the data intervals.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In many practical applications, since the available information
is often derived from uncertain assessments, real intervals can be
employed to represent uncertain and imprecise observations [8].
Interval regression analysis, which provides an interval estimation
of individual dependent variables, is an important tool for dealing
with uncertain data [14,8,7]. The interval parameters of a linear
interval model can be determined by solving a basic linear
programming problem of interval regression analysis [9,12].
Interval regression analysis was developed on the basis of an
important tool, namely fuzzy regression analysis introduced by
Tanaka et al. [23], whose objective is to build a model that
contains all observed output data included in the system in terms
of fuzzy numbers [23,25]. Fuzzy regression analysis has been
successfully employed in different applications such as market
forecasting [6], identification [15], house price estimation [24],
quality evaluation [1], and so on.

In view of the capability of neural networks as an approx-
imator of nonlinear mappings, many neural-network-based
approaches have been proposed for fuzzy regression analysis.
For instance, radial basis function networks were considered by
Cheng and Lee [3], in which the predefinition of functional
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relationship between the input and the output was not required.
Ishibuchi et al. [11] proposed an architecture of neural networks
for interval target values. Later, asymmetric fuzzy coefficients and
fuzzified neural networks were put forward by Ishibuchi and Nii
[12]. As for nonlinear interval regression analysis, Ishibuchi and
Tanaka [9] employed two backpropagation (BP) multi-layer
perceptrons (MLPs) to represent the upper and lower bounds of
data interval by the least square error from a given data set.
Nevertheless, the inclusion of given data in a data interval cannot
be assured by this method. That is, the data interval determined
by two MLPs approximately includes all given training data.
When training data are not contaminated by outliers, the
above-mentioned methods perform well by including almost all
given training data in the data interval. Nevertheless, since
training data are often corrupted by outliers, data interval
obtained by these methods may be influenced by outliers. The
robust nonlinear interval model for reducing the effects of outliers
on the interval regression analysis has been an interesting area of
research, whereas neural networks have been effective tools for
identifying the upper and lower bounds of data interval. For
instance, Huang et al. [7] employed two MLPs to determine
nonlinear interval models using a new cost function, in which the
cost function in [9] and the robust BP algorithm for function
approximation [2] were taken into account. Jeng et al. [14]
proposed the support vector interval regression networks con-
sisting of two radial basis function networks to determine the
upper and lower bounds. Moreover, Hwang et al. [8] proposed a
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robust method by combining the possibility estimation formula-
tion integrating the property of central tendency with the
principle of support vector interval regression.

It is found that although the above-mentioned robust learning
algorithms for determining nonlinear interval models are robust
against outliers, it seems that not all regular data can be included
in the estimated data interval by these methods. This paper aims
to propose a genetic-algorithm-based (GA-based) method for
determining the robust nonlinear interval regression model,
which can facilitate the inclusion of all regular data in the
estimated data interval. The proposed robust learning algorithms
have two characteristics: one is that not only the cost function
with different weighting schemes proposed in [9], but also
the number of training data included in the interval model
are incorporated into the fitness function, and the other is
that the idea of the quality of training patterns introduced in
[72] is taken into account. In practice, the upper limit on
the percentage of outliers beyond and beneath the true interval
model can be specified so as to identify the rejection region.
The training data beyond or beneath the estimated data
interval would generate very little influence on the determination
of both upper and lower bounds when they are located in the
rejection region. In particular, regarding the neural model,
owing to the simple architecture and the function approxi-
mation capability of the functional-link net [18-20], it is
interesting to examine the feasibility of employing two func-
tional-link nets to identify the upper and lower bounds of data
interval. To sum up, the main contribution of this paper is to
propose a new GA-based method for constructing a robust
nonlinear interval model.

The rest of this paper is organized as follows: the functional-
link net with the functional-expansion model for approximation is
introduced in Section 2. Section 3 introduces the MLP-based
approach proposed by Ishibuchi and Tanaka [9] for nonlinear
interval regression analysis. Section 3 describes the proposed
GA-based learning algorithms in detail. In Section 4, in order to
examine the effectiveness and applicability of the proposed
method for determining a nonlinear interval regression model,
three examples and two real data are taken into account.
Discussion and conclusions are presented in Section 5.

2. Neural network models for nonlinear interval
regression analysis

In this section, since the proposed GA-based method employs
two functional-link nets to determine the estimated data
interval, and the weighting schemes introduced in [9] are
incorporated into the proposed method, the functional-link net
and the MLP-based approach proposed by Ishibuchi and Tanaka
are introduced in Sections 2.1 and 2.2, respectively. Previously,
Chen and Jain [2] employed time-dependent cutoff points to
determine the degree of influence of each training pattern on the
training process for a robust backpropagation algorithm for
function approximation. Since time-dependent cutoff points
play an important role in reflecting the quality of the training
data for robust learning algorithms [7], they are introduced in
Sections 2.3.

2.1. Functional-link net

A functional-link net is a one-layer feed-forward network. The
sigmoid function fi(u)=1/(1+e ") is commonly used as the
transfer function for the output node. The input pattern of a
functional-link net can either be a functional-expansion repre-
sentation, tensor representation or a combination of these two

representations. Pao [18] demonstrated the effectiveness of the
functional-expansion representation using a set of orthogonal
functions in function approximation. In other words, the func-
tional-link net with a functional-expansion model can be used as
a tool for the approximation of nonlinear functions. For instance,
the functional link in the functional-expansion model can be
designed to generate {x, sin(nx), cos(mx), sin(2nx), cos(2nx),...} as
an enhanced representation for a single input x. In addition, Pao
[19] pointed out that the tensor model could be ineffective for
function approximation.

Let us denote the given non-fuzzy input-output pairs by (xp,
Yp), p=1, 2,..., m, where X, = (Xp1, Xp2,..., Xpn) and y, are input
vector and the corresponding desired output value, respectively.
For simplicity, the learning of a function of one variable is taken
into account. Without losing generality, let X, be represented by
(xp). Regarding the functional-link net with the functional-
expansion model, an enhanced input vector, (x,, sin(mx,), cos(nx,),
sin(2mxp), cos(2mxp)) is obtained by the functional link, and is
presented to the functional-link net subsequently. Let 6 be the
bias to the output node. Then, the actual output value o,
corresponding to (xp, sin(mx,), cos(mxp), sin(2mx,), cos(2nx,)) is
calculated as follows:

0p = fr(W1Xp + Wy sSin(nxp) + w3 cos(mxp)
+ Wy sin27mxp) + ws cos(2mxp) + 0) (1)

To train the functional-link net, the following sum square cost
function is used:

] m
E=§;(yp —0p)° (2)

where m is the number of training patterns. Both y, and o, range
between O and 1.

2.2. MLP-based approach

In view of the high capability of neural networks for nonlinear
regression, Ishibuchi and Tanaka [9] employed two MLPs,
MLP* and MLP,, to enhance the usefulness of the interval
regression analysis. The idea is that a nonlinear interval model
can be derived from two nonlinear functions. Each of the two
networks has n inputs, a single output and only one hidden layer.
Let g*(x) and g.(x) denote the output functions realized by MLP*
and MLP,, respectively. In practice, g*(x) and g,(x) represent
the upper and lower bounds of a nonlinear interval model,
respectively.

A nonlinear optimization problem is formulated to determine
the nonlinear interval regression model as follows:

Minimize (g*(x1) — g,(x1)) + (8"(x2)
—&.(x2) + - + (g (xm) — &.(xm)) (3)

subject to g.(xp) <Y, <& (xp), p=12,....m (4)

where (g*(xp) — g.(xp)) represents the width of the estimated data
interval for x,. The objective of the above formulation is to
determine the nonlinear interval model with the least sum of the
widths of the predicted intervals for the respective inputs subject
to that estimated data interval determined by the two MLPs
including all the given input-output pairs.

Instead of deriving a learning algorithm directly from the
above nonlinear optimization problem, Ishibuchi and Tanaka
derived learning algorithms for g*(x) and g,.(x) by the following
cost function with the weighting scheme wy:

™1
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