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The lack of an energy function is an important problem in many topographic map formation methods.
This paper describes formation of a map, called linear manifold topographic map, based on
minimization of an energy function. Using multiple low-dimensional linear manifolds as data
representation elements, the data distributions of many problems with high-dimensional data spaces
can be simply and parsimoniously modeled. Two sets of on-line adaptation rules are obtained based on
stochastic gradient descent on the energy functions devised for a soft and a hard data assignment.
Experimental results show good performance of the map in comparison to other relevant techniques.
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1. Introduction

Learning low-dimensional manifolds for representing high-
dimensional data is a common and useful technique for data
representation with many applications in pattern recognition and
signal processing domains. In general, three learning approaches
can be considered for this type of data representation: (1) finding
a single subspace or linear manifold representing the data,
(2) obtaining multiple linear manifolds or subspaces from the
data, and (3) learning nonlinear manifolds of the data. The second
approach can be considered as a compromise between the other
two. Typically, the methods of the first approach have limited
representation abilities because of the global linearity of the
learnt manifold. On the other hand, the methods in the third
approach are usually too complex, due to dealing with nonlinear
manifolds. In addition, some of them do not show a good
performance on the large-scale real-world problems or special
data manifolds [8,43]. Multiple linear manifold learning techni-
ques, i.e. the methods in the second approach, use a piecewise
linear representation, which avoids the global linearity limitation
of the first approach and the complexity and other problems of
the third approach at the same time.

Principal component analysis (PCA) [9] and independent
component analysis (ICA) [4] can be mentioned as popular
examples of the first approach. Examples of the third approach
include principal curves and surfaces [12,13], nonlinear PCA
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[24,41], kernel PCA [36], ISOMAP [37], local linear embedding
(LLE) [32], and Laplacian eigenmap [3]. A variety of efforts can be
found which belong to the second approach. Local PCA methods
such as [10,16,18] (among others) try to make PCA in partitions of
data space. The probabilistic PCA (PPCA) mixture model, proposed
by Tipping and Bishop [39], uses the maximum likelihood
estimation with the expectation-maximization (EM) algorithm
to find the linear manifolds. Its advantage over the previously
proposed local PCA approaches is in defining a probability density
for the data.

The adaptive subspace self-organizing map (ASSOM) proposed
by Kohonen [19] is another model of the second approach
mentioned above, which learns the basis vectors of multiple
lower-dimensional subspaces using a competitive on-line learning
method in a topographic map. Emergence of the transformation
invariant feature filters in the network was demonstrated by
Kohonen et al. [20,23]. Application of the model in texture
segmentation is studied by Ruiz-del-Solar et al. [33-35]. ASSOM is
a variant of the self-organizing map (SOM) [21], which takes
advantage of SOM’s key features such as topology preservation
and on-line (or incremental) learning ability. These features are
the main advantages of the ASSOM in comparison to the PPCA
mixture model. In addition, there are some biological interpreta-
tions for ASSOM (e.g. see [28,22]). Some problems are also
reported with ASSOM, such as slow convergence and instability
[44,26], and limited representation power due to the origin
intersection property of the subspaces [25].

Zhang et al. [44] tried to improve the stability of ASSOM using
local nonlinear PCA. As a result, the simplicity advantage of
subspaces due to linearity is lost in their work. Liu [25] added a
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simple SOM learning process to the ASSOM algorithm in order to
remove its origin intersection problem. He called his model
adaptive manifold SOM (AMSOM), since the subspaces are
replaced by linear manifolds. In the PCASOM network, proposed
by Lopez-Rubio et al. [26], the local mean and local covariance
matrices are iteratively approximated in a topographic map. The
model needs to solve the eigenvalue-eigenvector problem
periodically during the learning process to obtain the basis
vectors of each linear manifold. This makes the computational
cost of the algorithm higher than the original ASSOM which
directly learns the basis vectors.

Lopez-Rubio et al. [27] also proposed a similar model called
PCA competitive learning (PCACL), but without topology pre-
servation. Another improved model, called AOSSOM, is proposed
by Zheng et al. [45], which, as in [25,26], learns the mean vectors
in addition to the basis vectors of the manifolds. Recently, the
information maximization approaches in the kernel-based linear
manifold topographic maps have also been proposed by the
authors [1,2], which prevent the above-mentioned problems of
ASSOM, while maintaining its simplicity, low computations,
topology preservation, and on-line learning advantages.

As noted by Bishop et al. [6] and Heskes [14], there are several
theoretical issues with the standard SOM. One of its most
important problems is the lack of an objective or energy function
which could be optimized by the algorithm. This is the result of
heuristically inserting the neighborhood function in the stochastic
approximation-based learning rules of the SOM. This problem is
also inherited by the ASSOM and all of its modifications
mentioned above. To remove this problem, an energy function
for the linear manifold topographic map formation is proposed in
this paper. Learning rules are found which perform gradient
descent on the energy function to learn the mean and basis
vectors of multiple linear manifolds in a topographic map.
Inspired by the work of Heskes [14], the energy function is
defined to include the neighborhood functions. This way, topology
preservation of the map will be more reliable. An important
application of this property is in data visualization tasks. Topology
preservation is also a key factor when SOM is considered as a
piecewise constant approximator of data principal curves or
surfaces [29]. In the linear manifold topographic map, topology
preservation, instead, gives us a piecewise linear approximation of
the data principal manifold.

The paper is organized as follows. Some preliminary defini-
tions are given in Section 2. The on-line learning rules are
obtained for a soft and a hard version of winner assignment in
Section 3. Then, the performances of the rules are evaluated
through experiments in Section 4, and Section 5 concludes the

paper.

2. Preliminary definitions

The n-dimensional data points are assumed to approximately
locate on multiple regional d-dimensional linear manifolds, with
d<n. There are N processing units or neurons arranged in a
p-dimensional fixed-topology lattice L. Usually, the lattice
dimensionality p is considered to be equal to 1 or 2, especially
for visualization purposes, but in general p has an arbitrary value.
To each neuron i of the map, a linear manifold, determined by a
mean vector m; and d orthonormal basis vectors (b;,...,b#), is
assigned. The learning subjects thus will be the set of mean
vectors and basis vectors of all the map neurons, denoted by
M and B, respectively. Also, a neighborhood function h;; is defined
between each of the two neurons i and j of the map, which is
usually a decreasing function of the lattice distance between the
two neurons.

For each input vector X and each neuron i, a vector @; is defined
as @;=x-m; The vector @; can be decomposed into two
orthogonal vectors @; and @; = @; — @; by projecting it onto the
linear manifold as
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Two distances, #; = ||@;|l and 7; = ||@;|, are then defined as
on-manifold and off-manifold distances of x with respect to the
manifold of neuron i, where Il - II is the Euclidean norm of a vector.
Fig. 1 shows the projection of an input vector in the two-
dimensional (2-D) input space on a one-dimensional (1-D) linear
manifold.

In the original ASSOM, only the off-manifold distances F;
contribute in the error function, and thus the algorithm is
insensitive to the on-manifold distances. It is clear that clustering
the data based on the proximity to the subspaces alone (as done in
the original ASSOM) will not necessarily result in localized
partitions [17]. But, when we consider adaptable mean vectors
for linear manifolds, we implicitly assume a regional nature for
the manifolds. In other words, we want a neuron to represent the
data which are not only close to its manifold, but also moderately
close to its mean vector as well. It means that the lower on-
manifold distances as well as off-manifold ones should result in
lower error function values. Thus, for neuron i and input X, the
regional error is defined as
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We see that a combination of on- and off-manifold distances is
used in the above error term. Also, the distances of all the map
neurons j contribute in this error proportionally to the neighbor-
hood function hj;, to be able to define the energy function for the
topographic map. The parameter o« adjusts the mutual importance
of 7 and 7 in the error term. Its value cannot be greater than one in
order to maintain the manifold nature of the representation
elements. Note that if & = 0, the on-manifold distance is removed
from the error and we will have the global linear manifolds similar
to the ASSOM. This will result in problems in data representation
and, as mentioned before, it is not consistent with the local PCA
approaches. On the other hand, if o = 1, the effect of the basis
vectors is removed and the model will be similar to a type of SOM
presented in [14]. Thus, typically we must have 0 <o < 1. The value
of o in this range indicates that the role of the off-manifold
distance, as expected from a manifold learning method, is more
important than the role of the on-manifold distance in the
regional error term.

In a probabilistic framework, we consider the probability of
assigning current input vector X to neuron i as p;, with the
constraint > ;p;=1. Now, for the current input vector, the

v

Fig. 1. The projection of a 2-D input data onto a 1-D linear manifold with an
assigned mean vector.
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