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a b s t r a c t

It is well known that a complex nonlinear system can be represented as a Takagi–Sugeno (T–S) fuzzy

model that consists of a set of linear sub-models. This paper is concerned with the problem of mean

square exponential stability for a class of stochastic fuzzy Hopfield neural networks with discrete and

distributed time-varying delays. By using the stochastic analysis approach and Itô differential formula,

delay-dependent conditions ensuring the stability of the considered neural networks are obtained.

The conditions are expressed in terms of linear matrix inequalities (LMIs) and can be easily checked by

standard software. A numerical example is given to illustrate the effectiveness of the proposed method.

& 2008 Elsevier B.V. All rights reserved.

1. Introduction

Over the past decades, Hopfield neural networks [13] have
been extensively studied because of their important applications
in various fields such as combinatorial optimization, signal
processing, image processing and pattern recognition problems
[8]. Both in biological and artificial neural networks, the
interactions between neurons are generally asynchronous, which
inevitably results in time delays. It is known that time delays are
often a source of instability of neural networks [2]. Therefore,
considerable attention has been paid to the problem of stability
analysis of neural networks with delays, and a lot of research
results have been reported for the neural networks with various
types of time delays, see for example, [3,4,9,19,22,23,32–34], and
the references therein. In real nervous systems, stochastic
disturbances are nearly inevitable and affect the stability of
neural networks. The results in [21] showed one neural network
could be stabilized or destabilized by certain stochastic inputs. It
is shown that the stability analysis of stochastic neural networks
has primary importance in the design and applications of neural
networks. Recently, stability analysis of stochastic neural net-
works with time-delays has received much attention; see, for

example, [6,14,16,18,25–27,30]. The problem of stability analysis
for stochastic neural networks with discrete and distributed
delays was investigated in [16,25,26].

Fuzzy logic theory has shown to be an appealing and efficient
approach to dealing with the analysis and synthesis problems for
complex nonlinear systems. The well-known Takagi–Sugeno (T–S)
fuzzy model [24] is a popular and convenient tool in functional
approximations. During the last decades, the problems of stability
analysis and control synthesis for systems in T–S fuzzy model
with time-delay have been studied extensively, and a lot of
research results have been reported in the literature [1,5,7,17,29].
Recently, the T–S fuzzy control approach has been extended to the
study of nonlinear stochastic time-delay systems. For example,
some delay-independent stability criteria for a class of T–S fuzzy
stochastic systems with constant delays have been given in [28],
while the delay-dependent stabilization problem has been
investigated in [31]. In [12], the authors have dealt with fuzzy
sliding-mode control problem for uncertain nonlinear stochastic
time-delay systems by means of T–S fuzzy modeling approach,
and a sufficient condition for the exponential stability in the mean
square of the sliding motion has been proposed.

Quite recently, more attention has been paid to apply T–S fuzzy
models to describe the delayed Hopfield neural networks. The
problem of exponential stability for T–S fuzzy model in which the
consequent parts are composed of a set of stochastic Hopfield
neural networks with time-varying delays has been considered in
[15]. The overall fuzzy model can be achieved by fuzzy blending of
these nonlinear neural networks [15]. In [20], the global
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asymptotic stability problem of fuzzy bi-directional associative
memories neural networks with time-varying delays and para-
meter uncertainties has been investigated by means of T–S fuzzy
modeling approach. However, in [15] and [20], the results on
stability analysis for fuzzy delayed neural networks are delay-
independent. To the best of our knowledge, the mean square
exponential stability problem for stochastic fuzzy Hopfield neural
networks with discrete and distributed time-varying delays has
not been fully investigated, which is very challenging and remains
as an open issue.

Motivated by the ideas in Refs. [15,20], in this paper, we further
extend the ordinary T–S fuzzy models to describe the stochastic
Hopfield neural networks with discrete and distributed time-
varying delays. By using the stochastic analysis approach and free-
weighting matrices method [10,11], mean square exponential
stability criteria for the stochastic fuzzy delayed Hopfield neural
networks are established in the form of linear matrix inequalities
(LMIs), which can be readily verified by using standard numerical
software. A numerical example is provided to illustrate the
usefulness and less conservativeness of the developed techniques.

Notation. Through this paper, Rn and Rn�m denote the n-
dimensional Euclidean space and the set of all n�m real matrices,
respectively. I is the identity matrix with appropriate dimensions;
‘‘T’’ stands for the transpose of a matrix; For symmetric matrices X

and Y, the notation X4Y respectively XXY means that the X � Y is
positive definite (respectively, positive semi-definite); j � j refers
the Euclidean vector norm; ðO;F; fFtgtX0; PÞ is a probability
space with a filtration fFtgtX0 satisfying the usual conditions (i.e.
the filtration contains all P-null sets and is right continuous);
Denoted by L2

F0
ð½�2t;0�;Rn

Þ the family of all F0-measurable
Cð½�2t;0�;Rn

Þ-valued random variable x ¼ fxðyÞ : �2tpyp0g
such that sup�2tpyp0EjxðyÞjo1, where Eð�Þ stands for the
mathematical expectation; The symmetric terms in a symmetric
matrix are denoted by ‘‘�’’; Matrices, if not explicitly stated, are
assumed to have compatible dimensions.

2. Problem formulation

Consider the following neural networks with discrete and
distributed time-varying delays:

_yiðtÞ ¼ � aiyiðtÞ þ
Xn

j¼1

bijgjðyjðtÞÞ þ
Xn

j¼1

cijgjðyjðt � dðtÞÞÞ

þ
Xn

j¼1

dij

Z t

t�hðtÞ
gjðyjðsÞÞdsþ Ii; i ¼ 1;2; . . . ;n, (1)

or equivalently the vector form

_yðtÞ ¼ �AyðtÞ þ BgðyðtÞÞ þ Cgðyðt � dðtÞÞÞ þ D

Z t

t�hðtÞ
gðyðsÞÞdsþ I,

(2)

where yðtÞ ¼ ½y1ðtÞ; y2ðtÞ; . . . ; ynðtÞ�
T 2 Rn denotes the state vector

associated with n neurons. The matrix A ¼ diagða1;a2; . . . ; anÞ is a
diagonal matrix with positive entries ai40. B ¼ ðbijÞn�n, C ¼

ðcijÞn�n and D ¼ ðdijÞn�n are connection weight matrices represent-
ing the weighting coefficients of the neurons. gðxÞ ¼

½g1ðx1Þ; g2ðx2Þ; . . . ; gnðxnÞ�
T 2 Rn is the activation function with

gð0Þ ¼ 0. I ¼ ½I1; I2; . . . ; In�
T is a constant vector. The bounded

function dðtÞ and hðtÞ represents unknown discrete and distributed
time-varying delays, and satisfy 0odðtÞpd̄, _dðtÞpm and 0ohðtÞph̄,
respectively.
ðH1Þ The activation function g is bounded and satisfies

Lipschitz condition

jgðx1Þ � gðx2ÞjpKjx1 � x2j; 8x1; x2 2 R,

where K ¼ diagðk1; k2; . . . ; knÞ40 is a positive diagonal matrix.
Then, by (H1) we can have

jgðxÞjpKjxj; 8x 2 R. (3)

As discussed in [15], it is reasonable to assume that the neural
network (2) has only one equilibrium point y� ¼ ½y�1; y

�
2; . . . ; y

�
n�

T.
Then, we will shift the equilibrium point y� to the origin. The
transformation xð�Þ ¼ yð�Þ � y� puts system (2) into the following
form:

_xðtÞ ¼ �AxðtÞ þ Bf ðxðtÞÞ þ Cf ðxðt � dðtÞÞÞ þ D

Z t

t�hðtÞ
f ðxðsÞÞds, (4)

where xðtÞ is the state vector of the transformation system,
f jðxjðtÞÞ ¼ gjðyjðtÞ þ y�j Þ � gjðy

�
j Þ with f jðxjð0ÞÞ ¼ 0 for j ¼ 1;2; . . . ;n.

Then, from (3), we have

f T
ðxÞf ðxÞpxTðtÞKTKxðtÞ. (5)

In the following section, we will consider the following
stochastic fuzzy Hopfield neural network with discrete and
distributed time-varying delays, which is represented by a T–S
fuzzy model as [15]. The ith rule of this T–S fuzzy model is of the
following form:

Plant Rule i: IF y1ðtÞ is Ni1 and � � � ypðtÞ is Nip THEN

dxðtÞ ¼ �AixðtÞ þ Bif ðxðtÞÞ þ Cif ðxðt � dðtÞÞÞ þ Di

Z t

t�hðtÞ
f ðxðsÞÞds

� �
dt

þ si t; xðtÞ; xðt � dðtÞÞ;

Z t

t�hðtÞ
f ðxðsÞÞds

� �
doðtÞ, (6)

xðtÞ ¼ fðtÞ; 8t 2 ½�2t;0�; t ¼ maxfd̄; h̄g, (7)

where Nij is the fuzzy set, oðtÞ ¼ ½o1ðtÞ;o2ðtÞ; . . . ;omðtÞ�
T is a m-

dimensional Brownian motion defined on ðO;F; fFtgtX0; PÞ. As
discussed in Ref. [15], we assume that si: R

þ
�Rn

�Rn
�Rn

!

Rn�m is locally Lipschitz continuous and satisfies the linear
growth condition. Moreover, si satisfies

trace si t; xðtÞ; xðt � dðtÞÞ;

Z t

t�hðtÞ
f ðxðsÞÞds

� �T
"

�sj t; xðtÞ; xðt � dðtÞÞ;

Z t

t�hðtÞ
f ðxðsÞÞds

� ��

pjF1xðtÞj2 þ jF2xðt � dðtÞÞj2 þ F3

Z t

t�hðtÞ
f ðxðsÞÞds

����
����
2

. (8)

Scalar k is the number of IF–Then rules. y1ðtÞ, y2ðtÞ; . . . ; ypðtÞ are
the premise variables. It is assumed that the premise variables do
not depend on the noise-input variables oðtÞ explicitly. The
defuzzified output of system (6) is inferred as follows:

dxðtÞ ¼
Xk

i¼1

hiðyðtÞÞ � AixðtÞ þ Bif ðxðtÞÞ þ Cif ðxðt � dðtÞÞÞ

�

þDi

Z t

t�hðtÞ
f ðxðsÞÞds

�
dt þ

Xk

i¼1

hiðyðtÞÞ

� si t; xðtÞ; xðt � dðtÞÞ;

Z t

t�hðtÞ
f ðxðsÞÞds

� �� �
doðtÞ, (9)

where hiðyðtÞÞ ¼ miðyðtÞÞ
Pk

i¼1

.
miðyðtÞÞ , miðyðtÞÞ ¼

Qp
j¼1 NijðyjðtÞÞ and

NijðyjðtÞÞ is the degree of the membership of yjðtÞ in fuzzy set Nij. In

this paper, we assume that miðyðtÞÞX0 for i ¼ 1;2; . . . ; k andPk
i¼1 miðyðtÞÞ40 for all t. Therefore, hiðyðtÞÞX0 (for i ¼ 1;2; . . . ; k)

and
Pk

i¼1 hiðyðtÞÞ ¼ 1.
Throughout this paper, we assume that all membership

functions are continuous and piecewise continuously differenti-
able and the defuzzified model is also continuous. Clearly, based
on the above discussion, (9) has a unique global solution on tX0
through the initial value xðWÞ ¼ fðWÞ on �2tpWp0 in
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