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a b s t r a c t

We present a systematic approach to the mathematical treatment of the t-distributed stochastic

neighbor embedding (t-SNE) and the stochastic neighbor embedding (SNE) method. This allows an easy

adaptation of the methods or exchange of their respective modules. In particular, the divergence which

measures the difference between probability distributions in the original and the embedding space can

be treated independently from other components like, e.g. the similarity of data points or the data

distribution. We focus on the extension for different divergences and propose a general framework

based on the consideration of Fréchet-derivatives. This way the general approach can be adapted to the

user specific needs.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

Various dimension reduction techniques have been introduced
based on the aim of preserving specific properties of the original
data. The spectrum ranges from linear projections of original data,
such as principal component analysis (PCA) or classical multi-
dimensional scaling (MDS) [1] to a variety of locally linear and
nonlinear approaches, such as isomap [2,3], locally linear embed-
ding (LLE) [4], local linear coordination (LLC) [5], or charting [6,7].

Other methods aim at the preservation of the classification
accuracy in lower dimensions and incorporate the available label
information for the embedding, e.g. linear discriminant analysis
(LDA) [8] and generalizations thereof [9], extensions of the self-
organizing map (SOM) [10], incorporating class labels [11], and
limited rank matrix learning vector quantization (LiRaM LVQ)
[12,13]. For a comprehensive review on nonlinear dimensionality
reduction methods, we refer to [14].

Recently, the stochastic neighbor embedding (SNE) [15] and
extensions thereof have become popular for visualization. SNE
approximates the probability distribution in the high-dimensional
space, defined by neighboring points, with their probability dis-
tribution in a lower-dimensional space. In [16] the authors pro-
posed a technique called t-SNE, which is a variation of SNE

considering a particular statistical model assumption for data
distributions. The similarity of the distributions is quantified in
terms of the Kullback–Leibler divergence. In [17] it is argued that
the preservation of shift-invariant similarities as employed by SNE
and its variants is superior in comparison to distance preservation
as performed by many traditional dimension reduction techniques.

Functional metrics like Sobolev distances, kernel-based dis-
similarity measures and divergences have attracted attention
recently for the processing of data showing a functional structure.
These dissimilarity measures were for example investigated as
alternatives to the most common choice, the Euclidean distance
[18–22]. The application of divergences for Vector Quantization
and Learning Vector Quantization schemes have been investi-
gated in [23,24].

This work bases on [25], where the self-organized neighbor
embedding (SONE), which can be seen as a hybrid between the
self-organizing map (SOM) and SNE, has been extended to the use of
arbitrary divergences. In this contribution, we formulate a mathe-
matical framework based on Fréchet derivatives which allows to
generalize the concept of SNE and t-SNE to arbitrary divergences.
This leads to a new dimension reduction and visualization scheme,
which can be adapted to the user specific requirements in an
actual problem. We summarize the general classes of divergences
following the scheme introduced by [26] and extended in [23].
The mathematical framework for functional derivatives of con-
tinuous divergences is given by the functional-analytic generalization
of common derivatives, known as Fréchet derivatives [27,28]. It is the
generalization of partial derivatives for the discrete variants of the
divergences.
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Germany. Tel.: þ49 521106 12130.

E-mail address: kerstin.bunte@googlemail.com (K. Bunte).

URL: http://www.cit-ec.de/de/tcs/kerstin (K. Bunte).

Neurocomputing 90 (2012) 23–45

www.elsevier.com/locate/neucom
www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2012.02.034
mailto:kerstin.bunte@googlemail.com
http://www.cit-ec.de/de/tcs/kerstin
dx.doi.org/10.1016/j.neucom.2012.02.034


We introduce a general mathematical framework for the
extension of SNE and t-SNE for arbitrary divergences. The differ-
ent classes of divergences are characterized and for various
examples the Fréchet derivatives are identified. We demonstrate
the proposed framework for the example case of the Gamma
divergence. The behavior of different divergences stemming from
the identified divergence families are shown on several examples
in the image analysis domain.

2. Review of SNE and t-SNE

Generally, dimensionality reduction methods convert a high
dimensional data set fxig

n
i ¼ 1ARN into low dimensional data

fxig
n
i ¼ 1ARM . A probabilistic approach to visualize the structure

of complex data sets, preserving neighbor similarities is stochastic
neighbor embedding (SNE), proposed by Hinton and Roweis [15].
SNE converts high-dimensional Euclidean distances between data
points into probabilities that represent similarities. The condi-
tional probabilities pj9i that a data point xi would pick xj as its
neighbor is given by

pj9i ¼
expð�Jxi�xjJ

2=2s2
i ÞP

ja iexpð�Jxi�xjJ
2=2s2

i Þ
, ð1Þ

with pi9i ¼ 0. The variance si of the Gaussians centered around xi is
determined by a binary search procedure [16]. The density of the
data is likely to vary. In dense regions a smaller value of s is more
appropriate than in sparse regions. Let Pi be the conditional prob-
ability distribution over all other data points given point xi. This
distribution has an entropy which increases as si increases. SNE
performs a binary search for the value of si which produces a Pi with
a fixed perplexity specified by the user. The perplexity is defined as

perplðPiÞ ¼ 2HðPiÞ, ð2Þ

where HðPiÞ is the Shannon entropy of Pi measured in bits:
HðPiÞ ¼�

P
jpj9i log2pj9i. It can be interpreted as a smooth measure

of the effective number of neighbors and typical values ranges
between 5 and 50 dependent on the data set size.

The low-dimensional counterparts xi and xj of the high-dimen-
sional data points xi and xj are modeled by similar probabilities

qj9i ¼
expð�Jxi�xjJ

2
ÞP

ja iexpð�Jxi�xjJ
2
Þ
, ð3Þ

with again qi9i ¼ 0. SNE tries to find a low-dimensional data
representation which minimizes the mismatch between the condi-
tional probabilities pj9i and qj9i. As a measure of mismatch the
Kullback–Leibler divergence DKL is used such that the cost function
SNE is given by

C ¼
X

i

DKLðPiJQiÞ ¼
X

i

X
j

pj9i log
pj9i

qj9i
, ð4Þ

where Qi is defined similar to Pi as the conditional probability
distribution over all other points given xi. The cost function is not
symmetric and focuses on retaining the local structure of the data in
the mapping. Large costs appear for mapping nearby data points
widely separated in the embedding, but there is only small cost for
mapping widely separated data points close together. The mini-
mization of the cost function equation (4) is performed using a
gradient descent approach. For details we refer to [15].

The so-called ‘‘crowding problem’’ may be observed in SNE
and other local techniques, like for example Sammon mapping
[16]. The (even very small) attractive forces might crush together
moderately dissimilar points in the center of the map. Therefore,
in [16] van der Maaten and Hinton presented a technique called
t-SNE, which is a variation of SNE considering another statistical

model assumption for the data distribution to avoid that problem.
Instead of using the conditional probabilities pj9i and qj9i the joint
probability distributions P and Q are used to optimize a sym-
metric version of SNE with the cost function

C ¼DKLðPJQ Þ ¼
X

i

X
j

pij log
pij

qij

ð5Þ

with pii ¼ qii ¼ 0. Here, the pairwise similarities in the high-
dimensional space are defined by the conditional probabilities

pij ¼
pj9iþpi9j

2n
ð6Þ

and the low-dimensional similarities are given by

qij ¼
ð1þJxi�xjJ

2
Þ
�1P

ka lð1þJxk�xlJ
2
Þ
�1
: ð7Þ

The application of the heavy-tailed Student t-distribution with
one degree of freedom allows to model moderate distances in the
high-dimensional space by much larger distances in the embed-
ding. Therefore, the unwanted attractive forces between map
points that represent moderately dissimilar data points is elimi-
nated. See [16] for further details.

3. A generalized framework

In this paper we provide the mathematical framework for
the generalization of t-SNE and SNE, with respect to the use of
arbitrary divergences in the cost-function for the gradient des-
cent. We generalize the definitions towards continuous measures
in the high-dimensional space X ¼ fx,yg and a low-dimensional
space E ¼ fx,zgARM . The pairwise similarities in the high-dimen-
sional original data space are set to

p¼ pxy ¼
py9xþpx9y

2 �
R

1 dy0
, ð8Þ

with conditional probabilities

py9x ¼
expð�Jx�yJ2=2s2

x ÞR
expð�Jx�y0J2=2s2

x Þ dy0
:

3.1. The generalized t-SNE gradient

Let DðpJqÞ be a divergence for non-negative integrable mea-
sure functions p¼ pðrÞ and q¼ qðrÞ with a domain V and x,zAE
distributed according to PE [26]. Further, let rðx,zÞ : E � E-R

with the distribution Pr ¼fðr,PEÞ. Let us use the squared
Euclidean distance in the low dimensional space:

r¼ rðx,zÞ ¼ Jx�zJ2: ð9Þ

For t-SNE, q is obtained by means of a Student t-distribution, such
that

qðrðx0,z0ÞÞ ¼
ð1þrðx0,z0ÞÞ�1RR
ð1þrðx,zÞÞ�1 dx dz

, ð10Þ

which we will abbreviate below for reasons of clarity as

qðr0Þ ¼
ð1þr0Þ�1R R
ð1þrÞ�1 dx dz

¼ f ðr0Þ � I�1: ð11Þ

Now let us consider the derivative of D with respect to x:

@D

@x
¼
@Dðp,qðrðx,zÞÞÞ

@x
¼

ZZ
dD

dr0
@r0

@x
dx0 dz0

¼

ZZ
dD

drðx0,z0Þ
@rðx0,z0Þ
@x

dx0 dz0 ¼ 4

Z
dD

drðx,zÞ
ðx�zÞ dz: ð12Þ
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