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A method for performing kernel smoothing regression in an incremental, adaptive manner is described.
A simple and fast combination of incremental vector quantization with kernel smoothing regression
using adaptive bandwidth is shown to be effective for online modeling of environmental datasets. The
approach proposed is to apply kernel smoothing regression in an incremental estimation of the
(evolving) probability distribution of the incoming data stream rather than the whole sequence of
observations. The method is illustrated on publicly available datasets corresponding to the Tropical
Atmosphere Ocean array and the Helsinki Commission hydrographic database for the Baltic Sea.
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1. Introduction

We describe a method for performing kernel smoothing
regression in an adaptive manner. The aim of this work is to
define efficient, incremental and adaptive regression methods
that can be applied sequentially to data streams of incoming
observations of continuous data. The motivation for this work is
the need for simple and efficient regression methods that can
cope with large, diverse and evolving datasets in applications in
biological and environmental sciences.

The idea of adaptive regression has been explored in different
contexts and a large number of methods for both linear and
nonlinear regression are well established in different fields of
computer science. For example, the multivariate adaptive regres-
sion splines (MARS) method [1-3] builds models as a summation
of weighted basis functions following a divide and conquer
strategy that aims to adapt locally. However, most research
efforts so far have concentrated on offline regression.

Biological and environmental sciences have seen a great deal
of development and attention over the last few decades. An
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impressive improvement in observational capabilities and mea-
surement procedures has led to large databases and online
monitoring systems. Biological and environmental datasets are
normally defined by either regular or irregular spatial fields that
can be three-dimensional, for which multivariate observations,
such as temperature, salinity, nutrients, pollutants or air pressure,
are recorded across time. Biological and environmental processes
are usually part of intricate networks of dynamical processes
where their evolution in time is a key aspect.

Evolving, online or adaptive intelligent systems [4] are meant
to be applied on sequential data or streams of data. These systems
distinguish themselves from conventional offline learning meth-
ods and previous online methods in that their structure (in
addition to their parameters) evolves in order to account for
new data as it becomes available. Recently, there has been an
increase of interest in this field. Specially during the last decade
many advances have been made within the area of evolving
neuro-fuzzy systems for modeling and control [4-6]. Two advan-
tages of these methods are specially relevant for spatio-temporal
biological and environmental datasets. On the one hand, they rely
on simple and fast algorithms, usually operating in a one-pass
manner. Thus, large datasets can be processed efficiently. On the
other hand, their parameters but more importantly their structure
evolve in order to accommodate for new data. Thus, large datasets
can be efficiently processed online in a fully adaptive manner.

The approach proposed here is to perform kernel smoothing
regression in an estimated representation of the (potentially
evolving) probability distribution rather than on the whole
sequence of observations. This is achieved by performing vector
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quantization on the incoming stream. This way, a kernel smooth-
ing regression is performed in an incrementally computed density
estimation. In addition, the kernel bandwidth is adapted online.
All the steps involved are incremental and the method is thus
suitable for online learning. The method is simple, fast and adapts
in time to evolving streams of continuous data.

The remainder of the paper is organized as follows. Section 2
describes the proposed method. The method is evaluated and
compared in Section 3. Results and implications are further
discussed in Section 4.

2. Proposed method

Kernel regression, also called kernel smoothing regression in
order to avoid confusion with other kernel methods, is a non-
parametric approach in estimating the conditional expectation of
a random variable y [2,7,8]: E(y|x)=f(x), where y and x are the
random variables and f(-) is a non-parametric function. The kernel
smoothing regression approach is based on the kernel density
estimation. It is assumed that the model estimation has the
following form: f(x)=y-¢, ie. the random variable modeled
can be expressed as the sum of a deterministic, functional
component and a noise component.

The Nadaraya-Watson kernel regression method for function
estimation is one particular case in which the Gaussian kernel is
used. If n observations of input and output pairs, (x;y;), are
available, the estimator of f(~) for a given input observation is
defined as follows:

S 1 Kn(Xo0.X)y;
i1 Knxoxp) '

where h is the bandwidth or smoothing parameter, and K}, is the
kernel function [9]. Some common examples of kernels are
Gaussian, Epanechnikov, biweight, rectangular and triangular
[9,7]. A special case is the uniform kernel, which can be con-
sidered as the kernel used in the naive density estimation method
[10,11].

Vector quantization (VQ) is an unsupervised method with
parallelisms with methods for clustering and learning densities
such as k-means and Voronoi diagrams [2]. It is a practical and
popular approach in signal processing and machine learning for
lossy data compression and correction as well as density estima-
tion, i.e., the process of deriving from observed data an estimate
of an underlying probability density function. A key aspect of VQ
for the purposes of this work is that it allows one to approximate
the probability distribution function of a process by the distribu-
tion of prototypes or codewords. In fact, the area closer to a
particular codeword than to any other is inversely proportional to
the density in that region of the input domain.

The approach proposed here is to perform kernel regression in
an incremental estimation of the (potentially evolving) probabil-
ity distribution of the incoming data stream rather than the whole
sequence of observations. This is done in two stages. First, VQ is
incrementally performed on the incoming stream. Second, kernel
smoothing regression for each incoming observation is computed
using the codebook resulting from the first stage as an estimation
of the probability distribution of the incoming data. In addition,
the kernel bandwidth is adapted online.

All the steps required are incremental and the method is thus
suitable for online learning. The method is simple, adapts locally
to fit evolving streams of data, and is fast, with run-time
complexity proportional to the number of observations and their
dimensionality. An scheme of this method (KSR-VQ) is shown in
Fig. 1. For the sake of brevity we will refer to it as KSR-VQ.
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Fig. 1. Global scheme of the KSR-VQ method.

KSR-VQ takes advantage of the density matching capability of
VQ. The method is defined to be fast and suitable for streams of
nonstationary data and unbounded size. The two stages of KSR-
VQ are detailed in what follows.

2.1. Adaptive vector quantization

The first stage of KSR-VQ is performed adaptively and in an
incremental manner. Observations are processed one at a time.
Let m be the current number of prototypes in the codebook,
initialized to 0, and M be a maximum number of prototypes. In
Algorithm 1, we show a simple version of vector quantization
which is used in this paper. It should be noted that no sensitivity
parameters are used.

Algorithm 1. Simple Adaptive Vector Quantization.

Input: Sequence of observations, X = {x;e R, i=1,...}

Output: Codebook, (initially empty) set of prototypes,
C={pjeR’ j=1,...m), m<M

while new observations, x;, arrive do

if m <M then

|Add x; to C as a new prototype, p,,, 1:

else
Find in C the nearest prototype pyy to X;

Update the codebook with learning rate o,
moving pyyg, towards the sample
point : pyng) < (1=)PnnG +oXx;, o e[0,1];

As it will be shown in Section 3, relatively small codebooks of a
few hundred prototypes can achieve satisfactory performance in a
rather general setup.

2.2. Adaptive kernel smoothing regression

It is generally accepted that local adaptation of the kernel
bandwidth parameter is of major importance for obtaining
accurate models [7,9]. However, finding optimal or good values
for the bandwidth parameter and furthermore adapting it locally
is not a trivial task [12,2,7,9].
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