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Recently, diverse high quality prototype-based clustering techniques have been developed which can

directly deal with data sets given by general pairwise dissimilarities rather than standard Euclidean

vectors. Examples include affinity propagation, relational neural gas, or relational generative topo-

graphic mapping. Corresponding to the size of the dissimilarity matrix, these techniques scale

quadratically with the size of the training set, such that training becomes prohibitive for large data

volumes. In this contribution, we investigate two different linear time approximation techniques, patch

processing and the Nyström approximation. We apply these approximations to several representative

clustering techniques for dissimilarities, where possible, and compare the results for diverse data sets.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

The amount of digital data doubles roughly every 20 months.
Hence automatic tools to deal with large data sets become
indispensable for humans to extract relevant information from
the data. In this context, clustering constitutes one of the standard
techniques to structure and compress large data sets. Algorithms
which represent clusters in an intuitive form such as prototype-
based techniques offer the possibility to directly inspect the results.
Additional functionality such as e.g. topographic mapping as
enabled by self-organizing algorithms can provide further inside
into the data structure. Because of these facts, prototype based
clustering and extensions towards topographic mapping have lost
none of its attraction for users from diverse application areas [19].

Not only the size of modern data sets, but also its complexity
increases rapidly in modern application areas. Improved sensor
technology, for example, leads to very high dimensional measure-
ments corresponding to a very detailed resolution of the available
information. At the same time, dedicated data formats such as
XML files, network data, graph structures and the like become
more and more common. Classical prototype based classification
such as k-means clustering, neural gas, or the self-organizing map
usually deals with Euclidean vectors only. Hence these algorithms
are no longer suited in these settings. While the Euclidean

distance yields to almost meaningless values for high dimension-
ality, a lossless vectorial representation is not even possible for
data structures such as sequences, trees, or graph structures.

This fact has led to a variety of extensions of prototype-based
techniques to deal with more complex data formats, see e.g. [3].
One prominent interface is offered by a general similarity or
dissimilarity matrix: only pairwise similarities or dissimilarities
of data have to be defined based on which learning takes place.
Various dissimilarity measures are available for dedicated data
formats: for example, alignment for sequences [14], functional
norms for functional data [26], divergences for probability dis-
tributions [27], graph and tree kernels [16], or the compression
distance for general symbolic sequences [7]. Hence a formulation
in terms of dissimilarities extends the applicability of prototype
based techniques to a large variety of modern application areas.
Since data are characterized by pairwise relations rather than
Euclidean vectors, we refer to ‘relational data’ in the following.

There exist different principled ways to transfer prototype
based clustering towards dissimilarity data: kernel methods
extend standard techniques towards more general data by means
of kernelization, see e.g. [29,6]. This has the drawback that a valid
kernel has to be present, i.e. data have to be inherently Euclidean
corresponding to a positive semidefinite Gram matrix. Techniques
such as proposed in [17] are based on the so-called dual cost
function associated to quantization error. It allows an elegant
solution using techniques of statistical physics. However, no
explicit prototypes are available in this setting. As an alternative,
exemplar based techniques restrict prototype positions to data
points, such that standard cost functions as the quantization error
are still defined for general dissimilarities. Optimization of these
costs, however, becomes hard due to the discrete space of feasible
solutions. Median clustering determines optima by extensive
search [20,8]. It often leads to only suboptimal solutions due to
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the search in a very restricted space [8]. Recently, a very promis-
ing alternative optimization method has been proposed [10]:
affinity propagation (AP) reformulates the quantization error such
that it can be formalized as a factor graph, for which powerful
optimization techniques such as the max-sum algorithm are
readily available. By relying on log-likelihood values, the algo-
rithm inherently deals with a continuous relaxation of the
discrete optimization problem and usually arrives at very good
optima of the cost function. We will consider AP as one very
promising clustering technique for exemplar based data repre-
sentation for general similarities in the following.

AP has the drawback that additional functionality such as
neighborhood preservation of the clusters is not available.
Recently, Euclidean prototype based topographic mapping as
offered by neural gas [23] and the generative topographic map-
ping [4] have been extended to general dissimilarities. A key
technique is an implicit embedding of data in pseudo-Euclidean
space [15,13]. This way, a continuous update of prototypes
becomes possible leading to robust solutions of the respective
cost function in pseudo-Euclidean space. Using a simple algebraic
equation, the explicit computation of the embedding becomes
superfluous—update rules which depend on the given dissimila-
rities only can be derived. We will consider two instantiations of
this technique, relational neural gas (RNG) and relational gen-
erative topographic mapping (RGTM). These techniques consti-
tute two important schemes to infer a topographic mapping for
general dissimilarity data.

All methods, AP, RNG, and RGTM, have the drawback that they
rely on the full dissimilarity matrix which is quadratic with
respect to the number of data. Hence the techniques have
quadratic complexity and they become infeasible for large data
sets. Diverse approximations to get around a squared complexity
in similar settings are available in the literature: kernel
approaches can be accelerated to linear techniques by means of
the Nyström approximation [28] which approximates the full
Gram matrix by a low rank approximation. By integrating this
approximation into the learning algorithms, an overall linear
complexity results. We will show that the Nyström approxima-
tion can be extended to dissimilarity data and an integration into
RNG and RGTM is possible. A linear time approximation results
provided a fixed approximation quality of the matrix. We will
show that, depending on the nature of the dissimilarity matrix,
reasonable results can be obtained this way.

The Nyström technique has two drawbacks: it requires a
representative set of examples for the low rank approximation,
such that it cannot be used for online settings where data display
a clear trend. Further, in order to arrive at linear techniques, the
approximation has to be integrated into the learning algorithm.
Hence this method does not constitute an option for clustering
techniques where the entries of the dissimilarity matrix are used
in a distributed way such as AP.

Patch processing has been proposed as an alternative approx-
imation scheme. It offers a powerful linear time and limited
memory approximation for streaming data sets [1]. In the article
[15], it has been used to speed up RNG. The resulting technique,
patch RNG (PRNG) is linear time. It requires a direct access to the
dissimilarities. In this contribution, we transfer this technique to
AP and RGTM, resulting in patch AP (PAP) and patch RGTM
(PRGTM). We show that, depending on the given setting, good
approximation quality can be achieved. Patch processing can even
deal with streaming data which display a clear trend, unlike the
Nyström approximation.

Now we first introduce the basic prototype based clustering
techniques for general dissimilarity data. Then we introduce the
basic idea behind the Nyström technique and patch processing
and we show how these techniques can be applied to relational

clustering. Finally, we compare the techniques using three bench-
marks from bioinformatics: image data in the context of cytoge-
netics, mass spectra characterizing bacteria, and a part of the
classical SwissProt database of protein sequences. In all cases, we
compare the behavior of the techniques for data which are
directly accessible form versus a presentation as streaming data.
The tested algorithms, its approximations, and the corresponding
acronyms are summarized in Table 1 for convenience.

2. Prototype based clustering for dissimilarity data

We focus on prototype based clustering methods which
represent clusters in terms of prototypical representatives. In
the standard Euclidean setting, data v
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In this setting, the goal of clustering can be formalized as
minimizing the quantization error
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to obtain prototypes which are as representative for their recep-
tive field as possible. There exist different classical methods
which achieve this goal: a direct optimization by means of a
gradient descent as present in online vector quantization, or more
advanced methods which take a neighorhood structure into
account or which rely on a probabilistic interpretation of the
model [19,10,4]. The latter techniques often yield much more
stable results. Further, the possibly provide additional informa-
tion such as the ability to visualize the prototypes such as in the
generative topographic mapping or a neighborhood structure of
the clusters such as in neural gas. We will consider three typical
clustering techniques in this context: (I) The generative topo-
graphic mapping (GTM) which constitutes a generative statistical
model. It models data by means of a constraint mixture of
Gaussians induced by a mapping from a low-dimensional latent
space. In latent space visualization is possible. (II) The neural gas
(NG) which models data by means of representative prototypes
which represent data in relation to the rank of its distance. This
way a very robust algorithm is obtained which is widely inde-
pendent from scaling issues. (III) Affinity propagation (AP) which
reformulates the quantization error as a likelihood function. This
can be decomposed as factor graph for which the max-sum
algorithm can be used [10].

Table 1
Different clustering algorithms and approximations introduced and tested in this

contribution; algorithms which are suited for vectorial data only are set italic.

Algorithm Acronym

Affinity propagation AP

Patch affinity propagation PAP

Neural gas NG

Relational neural gas RNG

Patch relational neural gas PRNG

Nyström relational neural gas RNG (Ny)

Generative topographic mapping GTM

Relational generative topographic mapping RGTM

Patch relational generative topographic mapping PRGTM

Nyström relational generative topographic mapping RGTM (Ny)
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