
GPU-accelerated and parallelized ELM ensembles for large-scale regression

Mark van Heeswijk a,�, Yoan Miche a,b, Erkki Oja a, Amaury Lendasse a

a Aalto University School of Science and Technology, Department of Information and Computer Science, P.O. Box 15400, FI-00076 Aalto, Finland
b Gipsa-Lab, INPG, 961 rue de la Houille Blanche, F-38402 Grenoble Cedex, France

a r t i c l e i n f o

Available online 13 May 2011

Keywords:

ELM

Ensemble methods

GPU

Parallelization

High-performance computing

a b s t r a c t

The paper presents an approach for performing regression on large data sets in reasonable time, using

an ensemble of extreme learning machines (ELMs). The main purpose and contribution of this paper are

to explore how the evaluation of this ensemble of ELMs can be accelerated in three distinct ways:

(1) training and model structure selection of the individual ELMs are accelerated by performing these

steps on the graphics processing unit (GPU), instead of the processor (CPU); (2) the training of ELM is

performed in such a way that computed results can be reused in the model structure selection, making

training plus model structure selection more efficient; (3) the modularity of the ensemble model is

exploited and the process of model training and model structure selection is parallelized across

multiple GPU and CPU cores, such that multiple models can be built at the same time. The experiments

show that competitive performance is obtained on the regression tasks, and that the GPU-accelerated

and parallelized ELM ensemble achieves attractive speedups over using a single CPU. Furthermore, the

proposed approach is not limited to a specific type of ELM and can be employed for a large variety

of ELMs.

& 2011 Published by Elsevier B.V.

1. Introduction

Due to advances in technology, the size and dimensionality of
data sets used in machine learning tasks have grown very large
and continue to grow by the day. For this reason, it is important to
have efficient computational methods and algorithms that can be
applied on very large data sets, such that it is still possible to
complete the machine learning tasks in reasonable time.

Meanwhile, video cards’ performances have been increasing
more rapidly than typical desktop processors and they now
provide large amounts of computational power—compared again
with typical desktop processors [1].

With the introduction of NVidia CUDA [2] in 2007, it has
become easier to use the GPU for general-purpose computation,
since CUDA provides programming primitives that allow you to
run your code on highly parallel GPUs without needing to
explicitly rewrite the algorithm in terms of video card operations.
Examples of successful applications of CUDA include examples
from biotechnology, linear algebra [3], molecular dynamics simu-
lations and machine learning [4]. Depending on the application,
speedups of up to 300 times are possible by executing code on a
single GPU instead of a typical CPU, and by using multiple GPUs it
is possible to obtain even higher speedups. The introduction of

CUDA has lead to the development of numerous libraries that use
the GPU in order to accelerate their execution by several orders of
magnitude. An overview of software and libraries using CUDA can
be found on the CUDA zone web site [2].

In this work, one of these libraries is used, namely CULA [5],
which was introduced in October 2009 and provides GPU-accel-
erated LAPACK functions (see [6] for the original LAPACK). Using
this library the training and model structure selection of the
models can be accelerated. The particular models used in this
work are a type of feedforward neural network, called extreme
learning machine (ELM) [7–10] (see [11–14] for recent develop-
ments based on ELM).

The ELM is well-suited for regression on large data sets, since
it is relatively fast compared with other methods [11,15] and it
has been shown to be a good approximator when it is trained
with a large number of samples [16]. Even though ELMs are fast,
there are several reasons to implement them on GPU and reduce
their running time. First of all, because the ELMs are applied to
large data sets the running time is still significant. Second, large
numbers of neurons are often needed in large-scale regression
problems. Finally, model structure selection needs to be per-
formed (and thus multiple models with different structures need
to be executed) in order to avoid under- or overfitting the data.

By combining multiple ELMs in an ensemble model, the test
error can be greatly reduced [10,17,18]. In order to make it
feasible to apply an ensemble of ELMs to regression on large data
sets, in this paper various strategies are explored for reducing the

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

0925-2312/$ - see front matter & 2011 Published by Elsevier B.V.

doi:10.1016/j.neucom.2010.11.034

� Corresponding author.

E-mail address: mark.van.heeswijk@tkk.fi (M. van Heeswijk).

Neurocomputing 74 (2011) 2430–2437

www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2010.11.034
mailto:mark.van.heeswijk@tkk.fi
dx.doi.org/10.1016/j.neucom.2010.11.034


computational time. First, the training and model structure
selection of the ELMs is accelerated by performing these steps
largely on GPU. Second, the training of the ELM is performed in
such a way that values computed during training can be reused
for very efficient model structure selection through leave-one-out
cross-validation. Finally, the process of building the models is
parallelized across multiple GPUs and CPU cores in order to
further speed up the method.

Experiments are performed on two large regression data sets:
the first one is the well-known Santa Fe Laser data set [19] for
which the regression problem is based on a time series; the
second one is the data set 3 from the ESTSP’08 competition [19],
which is also a time series, but consists of a particularly large
number of samples, and needs a large regressor [20,21].

Results of the experiments show competitive performance on
the regression task, and validate our approach of using a GPU-
accelerated and parallelized ensemble model of multiple ELMs:
by adding more ELM models to the ensemble, the accuracy of the
model can be improved; model training and structure selection
of the individual ELM models can be effectively accelerated; and
due to the modularity of the ensemble model, the process of
building all models can be parallelized across multiple GPUs and
CPU-cores. Therefore, the proposed approach is very suitable for
application in large-scale regression tasks.

Although a particular type of ELM is used in this paper (i.e. an ELM
with conventional additive nodes), the proposed approach is not
limited to this specific type of ELM. Indeed, the proposed approach
can be employed for ELMs with a much wider type of hidden nodes,
which need not necessarily be ‘neuron-alike’ [22,16,12].

The organization of this paper is as follows. Section 2 discusses the
models used in this work and how to select an appropriate model
structure. Section 3 gives an overview of the whole algorithm.
Specifically, how multiple individual models are combined into an
ensemble model and what parts are currently accelerated using GPU.
Section 4 shows the results of using this approach on the two
mentioned large data sets. Finally, the results are discussed and an
overview of the work in progress is given.

2. Extreme learning machine for large-scale regression

The problem of regression is about establishing a relationship
between a set of output variables (continuous) yiAR,1r irM

(single-output here) and another set of input variables
xi ¼ ðx

1
i , . . . ,xd

i ÞARd. In the regression cases studied in the experi-
ments, the number of samples M is large: 10 000 for one case and
30 000 for the other.

2.1. Extreme learning machine (ELM)

The ELM algorithm is proposed by Huang et al. in [8] and uses
single-layer feedforward neural networks (SLFN). The key idea of
ELM is the random initialization of a SLFN weights. Below, the
main concepts of ELM as presented in [8] are reviewed.

Consider a set of M distinct samples ðxi,yiÞ with xiARd and
yiAR. Then, a SLFN with N hidden neurons is modeled as the
following sum:

XN

i ¼ 1

bif ðwixjþbiÞ, jA ½1,M�, ð1Þ

with f being the activation function, wi the input weights to the
ith neuron in the hidden layer, bi the hidden layer biases and bi

the output weights.
In the case where the SLFN would perfectly approximate the

data (meaning the error between the output ŷi and the actual

value yi is zero), the relation is

XN

i ¼ 1

bif ðwixjþbiÞ ¼ yj,jA ½1,M�, ð2Þ

which can be written compactly as

Hb¼ Y, ð3Þ

where H is the hidden layer output matrix defined as

H¼

f ðw1x1þb1Þ � � � f ðwNx1þbNÞ

^ & ^

f ðw1xMþb1Þ � � � f ðwNxMþbNÞ

0
B@

1
CA ð4Þ

and b¼ ðb1 . . .bNÞ
T and Y¼ ðy1 . . . yMÞ

T .
With these notations, the theorem presented in [8] states that

with randomly initialized input weights and biases for the SLFN,
and under the condition that the activation function f is infinitely
differentiable, the hidden layer output matrix can be determined
and will provide an approximation of the target values as good as
wished (non-zero) [8,16].

The output weights b can be computed from the hidden layer
output matrix H and target values Y by using a Moore–Penrose
generalized inverse of H, denoted as Hy [23]. Overall, the ELM
algorithm is then:

Algorithm 1. ELM

Given a training set ðxi,yiÞ,xiARd,yiAR, an activation

function f : R/R and N the number of hidden nodes,

1: - Randomly assign input weights wi and biases bi, iA ½1,N�;
2: - Calculate the hidden layer output matrix H;

3: - Calculate output weights matrix b¼HyY.

The proposed solution to the equation Hb¼ Y in the ELM
algorithm, as b¼HyY has three main properties making it a rather
appealing solution:

1. It is one of the least-squares solutions to the mentioned
equation, hence the minimum training error can be reached
with this solution;

2. It is the solution with the smallest norm among the least-
squares solutions;

3. The smallest norm solution among the least-squares solutions
is unique and is b¼HyY.

Theoretical proofs and a more thorough presentation of the
ELM algorithm are detailed in the original paper in which Huang
et al. present the algorithm and its justifications [8]. Furthermore,
as described in [22,16,12], the hidden nodes need not be ‘neuron-
alike’.

The only parameter of the ELM algorithm is the number of
neurons N to use in the SLFN. The optimal value for N can be
determined by performing model structure selection, using an
information criterion like BIC, or through a cross-validation
procedure.

2.2. Model structure selection by efficient LOO computation

Model structure selection enables one to determine an optimal
number of neurons for the ELM model. This is done using some
criterion which estimates the model generalization capabilities
for varying numbers of neurons in the hidden layer. One such
possibility is the classical Bayesian information criterion (BIC)
[24,25], which is used in [17].

M. van Heeswijk et al. / Neurocomputing 74 (2011) 2430–2437 2431



Download English Version:

https://daneshyari.com/en/article/410691

Download Persian Version:

https://daneshyari.com/article/410691

Daneshyari.com

https://daneshyari.com/en/article/410691
https://daneshyari.com/article/410691
https://daneshyari.com

