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a b s t r a c t

Image deblurring is a basic and important task of image processing. Traditional filtering based image

deblurring methods, e.g. enhancement filters, partial differential equation (PDE) and etc., are limited by

the hypothesis that natural images and noise are with low and high frequency terms, respectively.

Noise removal and edge protection are always the dilemma for traditional models.

In this paper, we study image deblurring problem from a brand new perspective—classification.

And we also generalize the traditional PDE model to a more general case, using the theories of calculus

of variations. Furthermore, inspired by the theories of approximation of functions, we transform the

operator-learning problem into a coefficient-learning problem by means of selecting a group of basis,

and build a filter-learning model. Based on extreme learning machine (ELM) [1–4], an algorithm is

designed and a group of filters are learned effectively. Then a generalized image deblurring model,

learned filtering PDE (LF-PDE), is built.

The experiments verify the effectiveness of our models and the corresponding learned filters. It is

shown that our model can overcome many drawbacks of the traditional models and achieve much

better results.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

Image deblurring, or restoration, is a classical and important
task of image processing. Nowadays there are large numbers of
theories and algorithms for image deblurring. As a type of famous
and effective image deblurring methods, partial differential
equation (PDE) models, e.g. total variation (TV) model [7],
Mumford–Shah model [8], Perona–Malik (P–M) PDE [9] and etc.,
improve the traditional linear filtering methods, e.g. constrained
least square model [5], Weiner filter [6], and play a very
important role in image processing. See [6,10] for a comprehen-
sive and detailed introduction.

However, the limitations of traditional PDE based methods are
also obvious: frequency characteristic is not a good way to
distinguish the features in the natural images from noise. So
noise removal and edge protection are always the dilemma for
traditional filtering based methods. Essentially, this is caused by
the lack of statistic information of image category, i.e. the image
priors. Statistic learning methods have proposed an effective way
to achieve the image priors from the samples of image category.
Many existing models and algorithms, e.g. [13–17], can be used to
learn good image priors.

Some studies have also been made on using a neural classifier
to learn an image deblurring model. Basu and Su proposed the

projection pursuit learning network (PPLN) based method [11],
and a 3-stage hybrid learning system [12] for blind deconvolu-
tion. Different from the existing methods, our model, which is
derived form PDE models, focuses on the continuous case. It is an
extension of traditional learning models and closely connected
with the theories of PDE and inverse problems.

In this paper, we revisit traditional PDE models from a
classification point of view, and build a theoretical framework
unifying both PDE models and learning methods. Based on the
theories of approximation of functions [18,19], we skillfully
transform the operator (or functions) learning problem into a
coefficient-learning problem with a group of basis.

Then, we design a learning algorithm based on extreme
learning machine (ELM) [1–4]. And a group of filters are achieved
for the effective classification of noise and natural images.
Furthermore, we propose a new and effective image deblurring
model: learned filtering PDE (LF-PDE) model.

Experimental results show that our model can overcome many
drawbacks of the traditional PDE models, e.g. spots caused by
isolated noise points, ‘‘piecewise-constant’’ characters and etc.,
and achieve much better results.

2. Image restoration

Image deblurring, or restoration, is a typical inverse problem
in image processing area. Due to the ill-posed character, regular-
ization is necessary for a stable inverse process. We first propose a
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mathematic description of image restoration, then build an
optimization model – energy functional model, and then derive
the algorithm model – PDE model. Finally, we point out the
substantial limitations of traditional models.

2.1. Image blurring and restoration

For linear and shift invariant (LSI) system, the blurred image
vðxÞ is modeled as the original image u0ðxÞ convoluted by a point
spread function (PSF) GðxÞ, and added by the additional noise e.
Mathematically, it is written as

vðxÞ ¼ ðAu0ÞðxÞþe¼ GðxÞ,u0ðxÞþe, ð1Þ

where x¼ðx1,x2ÞAO�R2 denotes a two-dimensional (2D) vari-
able, A denotes a convolution operator, , denotes the 2D
convolution, and GðxÞ is also called the kernel of A. e is supposed
to be the independent and identically distributed (i.i.d.) Gaussian
noise in this paper.

Image deblurring, or deconvolution, is the problem of restoring
the original sharp image u0ðxÞ from the blurred image vðxÞ. It is an
inverse problem of image blurring, and can be modeled as an
optimization problem:

inf
uA I

JðAuÞðxÞ�vðxÞJ2, ð2Þ

where I denotes the functional space, e.g. C½O�, L1½O�, L2½O� and

etc., JAu�vJ :¼ ð
R
OðAu�vÞ2 dxÞ1=2. Due to the ill-posed character of

the inverse problem, the solution of Eq. (2) may not be unique;
even it is unique, it may not depend on the blurred image in a
continuous way. Therefore, some regularization methods should
be used to stabilize the inverse process, i.e. restricting I by
additional constrains or priors of u1:

JRðuÞJC :¼

Z
O
CðRðuÞÞ dxrC0, ð3Þ

where R : I-IS denotes an operator, IS denotes the feature space,
i.e. the range of R, and J�JC denotes a special energy form defined

by C. For instance, let CðsðxÞÞ :¼ s2ðxÞ, then J�JC ¼ J�J2
2 denotes

the traditional energy form defined by the square of l2-norm;
let CðsðxÞÞ :¼ jsðxÞj, then J�JC ¼ J�J1 denotes the energy defined by
l1-norm.

2.2. Energy functional model

Image restoration can be considered as a constrained optimi-
zation problem, i.e. Eqs. (2) and (3). By Lagrange multiplier
method, it can be modeled as an energy functional optimization
problem as follows:

inf
uA I

Z
O
½jv�Auj2þl �CðRðuÞÞ� dx, ð4Þ

where A is typically modeled as a low-pass filtering process, and
its kernel GðxÞ varies according to the blurring process, e.g. out of
focus, motion blur, Gaussian blur and etc. l is called the
regularization parameter. The restored image uoptðxÞ is achieved
by solving Eq. (4).

Eq. (4) is the generalized form of the energy functional model
for image deblurring. Traditional linear or nonlinear models, e.g.
Tikhonov method (R¼r, Cð�Þ ¼ J�J2

2) [6], TV model (R¼r,
Cð�Þ ¼ J�J1) [7] and etc., are the specialized cases of Eq. (4).

R and C decide the existence and uniqueness of uopt (i.e. the
solution of Eq. (4)), and play a very important role in image
restoration.

2.3. PDE model

Energy functional model Eq. (4) is the mathematical descrip-
tion of the task of image restoration, yet, for the implementation
of the task, the corresponding PDE model should be derived. The
numerical solution method of the PDE model is the image
restoration algorithm.

By calculus of variations theory, if ( uoptðxÞAI such that uopt is
the solution of Eq. (4), then uopt must satisfy the equation:

d
du

Z
O
jv�Auj2þl �CðRðuÞÞ dx

� �
¼ 0: ð5Þ

Let sðxÞ ¼ ðRðuÞÞðxÞ. From Eq. (5), one can derive the general Euler
equation:

A�Au�A�vþl � ðRuÞ
� @

@s
CðsÞ

����
s ¼ RðuÞ

 !
¼ 0, ð6Þ

where Ru denotes the Frechet derivative. An and ðRuÞ
� denote the

adjoint operator of A and Ru, respectively. In general, Eq. (6) is
hard to solve. Solving the variational gradient flow (VGF) PDE:

@u

@t
¼� A�Au�A�vþl � ðRuÞ

� @

@s
CðsÞ

����
s ¼ RðuÞ

 !" #
ð7Þ

is a way to approach uopt. VGF PDE is appropriate for deriving
iterative algorithms. There are many numerical methods for
solving VGF PDE, e.g. finite difference, finite element and etc.

Let R¼r, then the VGF PDE Eq. (7) can be specified as the
traditional linear (with Cð�Þ ¼ J�J2

2) heat diffusion PDE:

@u

@t
¼ lnuþ f ðuÞ ð8Þ

and the nonlinear (with Cð�Þ ¼ J�J1) heat diffusion PDE:

@u

@t
¼ l � div

1

jruj
ru

� �
þ f ðuÞ, ð9Þ

where f ðuÞ ¼ A�v�A�Au, and n :¼ divðrÞ ¼ @2=@x2
1þ@

2=@x2
2.

2.4. Limitations of traditional models

Now let us reconsider the effect of R and C more deeply.
Suppose that u0A I, such that any function uAI can be decom-
posed as u¼ u0þud, where ud denotes the disparity between u0

and u. If uda0 but udAnullðAÞ, then Au¼ Au0, thus u and u0 are
inseparable by Eq. (2). In order to separate u and u0, additional
criterion, i.e. Eq. (3), is necessary. The validity of the regulariza-
tion method relies on the choice of R and C such that for any
u0,uAI, if udAnullðAÞ but uda0, then JRðuÞJC4JRðu0ÞJC.

Let I0 � I denotes the subspace consisting of all feasible
solutions u0. Let ðI0Þ

c denotes the complement of I0, consisting
of all infeasible images. Then the regularization is essentially the
separation of I0 and ðI0Þ

c , and the ideal result of R is to map I0 and
ðI0Þ

c into different parts (denoted by I0
S and ðI0

S Þ
c , respectively) in

the feature space IS. I0
S and ðI0

S Þ
c are separated by the range of

J�JC. If uAI0, JRðuÞJC will be small, otherwise JRðuÞJC will
be large.

Then let us review the existing PDE models. The basic
hypothesis of Tikhonov method is that I0 � CO such that I0

S � L2
O

for all feasible uAI0. But as is known to all, many natural images
contain jumps and edges, i.e. I0JCO, thus, many uAI0 are
excluded by Tikhonov method.

As an improvement, TV model breaks the hypothesis of
Tikhonov methods by releasing the constrains from I0

S � L2
O to

I0
S � L1

O. I0 is extended to contain some uðxÞ with finite jumps and
edges. For example, if uðxÞ contains jumps and edges, then jruj

will contain the Dirac function dðxÞ. JdðxÞJ2
2 ¼1, but JdðxÞJ1 ¼ 1.

1 In the view of statistic, JRðuÞJC is assumed to obey the exponential family of

distributions, and the constrain Eq. (3) is equivalent to a prior term of u.
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