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a b s t r a c t

A robust training algorithm for a class of single-hidden layer feedforward neural networks (SLFNs) with

linear nodes and an input tapped-delay-line memory is developed in this paper. It is seen that, in order

to remove the effects of the input disturbances and reduce both the structural and empirical risks of the

SLFN, the input weights of the SLFN are assigned such that the hidden layer of the SLFN performs as a

pre-processor, and the output weights are then trained to minimize the weighted sum of the output

error squares as well as the weighted sum of the output weight squares. The performance of an SLFN-

based signal classifier trained with the proposed robust algorithm is studied in the simulation section

to show the effectiveness and efficiency of the new scheme.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

The applications of single-hidden layer feedforward neural
networks (SLFNs) have been receiving a great deal of attention in
many engineering disciplines. As shown in [1–17], by properly
choosing the number of nodes in both the hidden layer and the
output layer and training the input and the output weights, one
may use SLFNs for function approximation, digital signal and
image processing, complex system modeling, adaptive control,
data classification and information retrieval. In practical applica-
tions, the techniques for training the weights of SLFNs are very
important in order to guarantee the good performance of SLFNs.
The most popular training technique used for SLFNs is the
gradient-based back-propagation (BP) algorithm [1,2]. It has been
seen that the BP can be easily implemented from the output layer
to the hidden layer of SLFNs in real-time. However, the slow
convergence has limited the BP in many practical applications
where the fast on-line training is required. In addition, the
sensitivity of the SLFNs, trained using the BP, with respect to
the input disturbances and the large spread of data is another
important issue that needs to be further studied by the research-
ers and engineers in neural computing.

In [4–9], a learning algorithm called extreme learning machine

(ELM) for SLFNs is proposed, where the input weights and the
hidden layer biases of an SLFN are randomly assigned, the SLFN is

then simply treated as a linear network and the output weights of
the SLFN are then computed by using the generalized inverse of
the hidden layer output matrix. It has been noted that the ELM
has extremely fast learning speed and produces good perfor-
mance in many cases. However, the poor robustness property of
the SLFNs trained with the ELM has been observed as the SLFNs
are used for signal processing to handle the noisy data. For
instance, as the input weights and the hidden layer biases are
randomly assigned in an SLFN, the changes of the hidden layer
output matrix sometimes are very large because of the effects of
the input disturbances, which also result in the big changes of the
output weight matrix of the SLFN.

In [10,11], two modified ELM algorithms are proposed, where
the cost function consists of the sum of the weighted error
squares and the sum of the weighted output weight squares. In
terms of the optimization of the cost function in the output
weight space and the proper choice of the weights of the error
squares, the structural and the empirical risks are balanced and
reduced. However, the structural and the empirical risks are not
significantly reduced and the robustness property of the trained
SLFN is not significantly improved because of the random assign-
ment of both the input weights and the hidden layer biases.
According to the statistical learning theory [18–24], the big
changes of the output weight matrix will largely increase both
the structural risk and empirical risk of the SLFNs. Therefore, in
order to substantially reduce the structural and empirical risks
and improve the robustness property of SLFNs with respect to the
input disturbances, the proper choice of the input weights of
SLFNs is absolutely necessary.
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In this paper, we propose a new robust training algorithm for a
class of SLFNs, with both linear nodes and an input tapped-delay-
line memory, for signal processing purpose. Since the output of
each linear hidden node in the SLFN is the sum of the weighted
input data, each node can be treated as a FIR filter. Therefore, the
hidden layer with linear nodes can be designed as the pre-
processor of the input data. For instance, based on the FIR filter
design techniques in signal processing [25–28], we may design
the hidden layer as a group of low-pass filters or high-pass filters
or band-pass filters or band-stop filters or other types of filters for
the purpose of the pre-processing of the input data with dis-
turbances and undesired frequency components. The advantages
of the hidden layer’s pre-processing function are that not only the
input disturbances and the undesired frequency components can
be removed, but also both the structural and empirical risks of the
SLFNs can be greatly reduced as well from the viewpoint of the
output of the SLFNs.

For the design of the output weight matrix of the SLFNs, in this
paper, we choose an objective function which includes both the
weighted sum of the output error squares and the weighted sum
of the output weight squares of the SLFNs [1,10,11,29–31]. By
minimizing this objective function in the output weight space, as
well as the proper choice of the input weights based on the FIR
filter design techniques, both the structural and empirical risks
can be balanced and reduced for signal processing purpose. For
the comparison with the ELM and the modified ELM algorithms in
[10,11], we call the new training scheme to be developed in this
paper as the FIR-ELM algorithm. According to the ELM theory, the
hidden nodes used in SLFNs may not be neuron alike. We may
alternatively call the hidden linear nodes, with the input weights
trained with the FIR filtering techniques in this paper, as the FIR
nodes, which are one type of the many possible hidden nodes
mentioned in [4–10].

It should be emphasized that the SLFNs considered in [4–11]
use the nonlinear hidden nodes and the linear output nodes
without dynamics and, by the proper choice of the output
weights, the SLFNs can uniformly approximate nonlinear input–
output mappings. However, the class of SLFNs considered in this
paper use both the linear hidden nodes and the linear output
nodes. In order to make such SLFNs to have the universal
approximation capability, an input tapped-delay-line memory is
added to the input layer. It has been shown in [32] that the SLFN
with linear (or nonlinear) nodes, as well as an input tapped-delay-
line memory, is capable of approximating the maps that are
causal, time invariant and satisfy certain continuity and approxi-
mately-finite-memory conditions. Since, in many cases of signal
processing, the input and output data have some dynamic
relationships, it is thus convenient to train the SLFNs with linear
nodes as well as an input tapped-delay-line memory to perform
as the signal processors.

The rest of the paper is organized as follows: In Section 2, a
class of SLFNs, with linear nodes and an input tapped-delay-line
memory, as the signal classifiers are formulated, and the issues on
the empirical and the structural risks, as well as the robustness
property of the SLFNs with respect to the input disturbances,
trained with the ELM algorithm and the modified ELM algorithm
in [4–11], are studied. In Section 3, the design of the input
weights using FIR filtering technique, for reducing both the
empirical and structural risks, improving the robustness of the
SLFNs with respect to the input disturbances is presented and
removing some undesired frequency components. In Section 4,
the design of the output weights by the minimization of the
weighted sum of the output error squares as well as the weighted
sum of the output weight squares of the SLFNs are discussed in
detail. In Section 5, the SLFN-based signal classifiers, trained with
the ELM in [4–9], the modified ELM in [11] and the FIR-ELM

developed in this paper are simulated and compared in support of
the effectiveness of the proposed FIR-ELM algorithm for signal
processing. Section 6 gives conclusions and some further work.

2. Problem formulation

The architecture of a class of SLFNs with the linear hidden
nodes and an input tapped-delay-line memory is presented in
Fig. 1, where the output layer has m linear nodes, the hidden layer
has ~N linear nodes, D is the unit-delay element, the n�1 time-
delay elements, added to the input of the neural network, form
the tagged-delay-line memory, which indicates that the input
sequence x(k), x(k�1), y, x(k�nþ1) represent a time series
consisting of the present observation x(k) and the n�1 past
observations of the process.

From Fig. 1, the input data vector x(k) and the output data
vector O(k) can be expressed as follows:

xðkÞ ¼ xðkÞ xðk�1Þ � � � xðk�nþ1Þ
h iT

ð2:1Þ

OðkÞ ¼ o1ðkÞ o2ðkÞ � � � omðkÞ
h iT

ð2:2Þ

the output of the ith hidden neuron is computed as

yi ¼
Xn

j ¼ 1

wijxðk�jþ1Þ ¼wT
i xðkÞ for i¼ 1,. . ., ~N ð2:3Þ

with

wi ¼ wi1 wi2 � � � win
� �T

for i¼ 1,. . ., ~N ð2:4Þ

and the ith output of the neural network, oi(k), is of the form

oiðkÞ ¼
X~N
p ¼ 1

bpiw
T
pxðkÞ for i¼ 1,. . .,m ð2:5Þ

Thus, the output data vector O(k) can be expressed as

OðkÞ ¼
X~N
p ¼ 1

bpwT
pxðkÞ ð2:6Þ

with

bi ¼ bi1 bi2 � � � bim

h iT
for i¼ 1,. . ., ~N ð2:7Þ

In this paper, we use N distinct sample signal data vector
pairs ðxi,tiÞ to train the SLFN given in Fig. 1, where xi ¼

Fig. 1. A single-hidden layer neural network with linear nodes.
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