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a b s t r a c t

In this paper, we propose a methodology for training a new model of artificial neural network called the

generalized radial basis function (GRBF) neural network. This model is based on generalized Gaussian

distribution, which parametrizes the Gaussian distribution by adding a new parameter t. The general-

ized radial basis function allows different radial basis functions to be represented by updating the new

parameter t. For example, when GRBF takes a value of t¼ 2, it represents the standard Gaussian radial

basis function. The model parameters are optimized through a modified version of the extreme learning

machine (ELM) algorithm. In the methodology proposed (MELM-GRBF), the centers of each GRBF were

taken randomly from the patterns of the training set and the radius and t values were determined

analytically, taking into account that the model must fulfil two constraints: locality and coverage. An

thorough experimental study is presented to test its overall performance. Fifteen datasets were

considered, including binary and multi-class problems, all of them taken from the UCI repository.

The MELM-GRBF was compared to ELM with sigmoidal, hard-limit, triangular basis and radial basis

functions in the hidden layer and to the ELM-RBF methodology proposed by Huang et al. (2004) [1]. The

MELM-GRBF obtained better results in accuracy than the corresponding sigmoidal, hard-limit,

triangular basis and radial basis functions for almost all datasets, producing the highest mean accuracy

rank when compared with these other basis functions for all datasets.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

Artificial neural networks (ANN) are largely used in applica-
tions involving classification or function approximation. Lately, it
has been proved that several classes of ANN are universal function
approximators [2–4]. Among them, we find radial basis function
neural networks (RBFNNs) [5,6], multi-layer perceptrons (MLPs)
[7] or product unit neural networks (PUNNs) [8,9]. All are multi-
layered networks and can be considered as connectionist models.
RBFNNs use, in general, hyper-ellipsoids to split the pattern space.
This is different from MLPs which build their classifications on
pseudo-hyper-planes, defined by a weighted sum [10].

RBFNNs use the value of the distance to estimate the response
value, being functions of two arguments, x and c, where
x¼ ðx1,x2, . . . ,xK Þ

T is the vector of co-ordinates of a pattern of the
dataset and c¼ ðc1,c2, . . . ,cK Þ

T are the location parameters to
determine kernel positions. The characteristic feature of local

RBFNNs is the fact that their response value decreases monotoni-
cally with the distance from the center c of the radial function.

RBFNNs are parametrized by a width denoted here by r. If the
distance between x and c is small compared to the width of the
kernel, the kernel value will be close to one. Large distances by
contrast are mapped to values close to zero. The width of the
RBFNNs in kernel-based methods must produce a correct balance
between covering: the sum of all RBFs must have a high value in all
patterns of the dataset; and locality: the RBF should provide a high
value (close to one) for patterns that are close to the environment
where the RBF is located, and low values (near zero) for patterns
that are not located in the region of space where the RBF is centered.

The Gaussian RBFs are based on the Gaussian density function
and are defined by a ‘‘center’’ position and a ‘‘width’’ parameter.
The Gaussian function gives the highest output when the incom-
ing variables are closest to the center position and decreases
monotonically as the distance from the center increases. Gaussian
distribution can be parametrized by a real parameter t, resulting
in generalized Gaussian distribution (GGD). The GGD may repre-
sent different forms of distribution function by changing a real
parameter t. We can highlight the impulsive, Laplacian, Gaussian
and uniform distributions.
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Based on this probability distribution, we propose the general-
ized radial basis function (GRBF) by removing the constraints of a
probability function. In this way, the generalized radial basis
function (GRBF) is defined as

fðx; c,r,tÞ ¼ exp �
Jx�cJt

rt

� �
: ð1Þ

Training of RBFNNs can be classified into two categories: quick
learning and full learning. Quick learning usually involves a two-
step process. First, the parameters governing the basis functions
are determined by a relatively fast, unsupervised clustering [11]
or vector quantization approach [12]. Next, the weights of the
basis functions are determined using linear optimization techni-
ques. A full learning scheme (for instance gradient-descent-based
methods) optimizes all of the parameters in a supervised mode
[6,13,14].

Gradient-descent-based algorithms may converge very slowly
to the solution of the given problem if the learning rate is small.
However, if the learning rate is large, they can be unstable or
divergent. They may also easily get over-fitting or be stuck in local
optima [15,16]. Moreover, most of the training algorithms based
on gradient descent are still slow due to the many iterative steps
required in the learning process. That is the reason why our
proposal will be based on the first approach.

Recently, Huang et al. showed that a single hidden layer
feedforward neural network (SLFN) can learn distinct observa-
tions with an arbitrary small error margin if the activation
function is chosen properly [17–19]. An effective training algo-
rithm for SLFNs called extreme learning machine (ELM) was also
proposed by Huang et al. [20,21]. In ELM, the input weights of the
hidden nodes are randomly chosen, and the output weights of
SLFNs can be determined through the pseudo-inverse operation
of the output matrix in the hidden layer. This algorithm can avoid
many of the problems which occur in gradient-descent-based
learning methods. For that reason, the GRBF proposed in this
paper was trained by means of a modified version of the ELM
algorithm (MELM-GRBF).

The main novelty introduced by the MELM-GRBF is in the
determination of the GRBFs. While in the ELM-RBF algorithm [1],
the centers and the radii of the RBFs are selected randomly, in the
MELM-GRBF algorithm proposed, the centers are initialized by
randomly selecting some patterns in the training dataset. The
values of the radius and t are determined analytically by solving
two equations that ensure that the model fulfils two constraints:
locality and coverage.

This paper is organized as follows: a brief analysis of the
generalized Gaussian distribution is given in Section 2. The single
layer feedforward GRBFNN is presented in Section 3. A methodol-
ogy to optimize the GRBFNN parameters based on ELM is
presented in Section 4. Section 5 explains the experiments that
were carried out. Finally, Section 6 summarizes the conclusions of
our work.

2. Generalized Gaussian distribution

In order to cope with some limitations of the Gaussian RBF
[22–24], we need to use another model that can describe the
statistical behaviors of the object and background classes in a
multiclassification problem in the best possible way. A possible
solution is to adopt a more general parametric model that should
satisfy two main properties: (i) flexibility (i.e., it should be
capable of modeling a large variety of statistical behaviors) and
(ii) stability (i.e., it should not require the estimation of a large
number of parameters). Motivated by the above observations,

the present study proposes a new class of RBFs based on general-
ized Gaussian distribution (GGD).

The GGD requires only one additional parameter to be esti-
mated compared to the Gaussian distribution, and it can approx-
imate a large class of statistical distributions (e.g., impulsive,
Laplacian, Gaussian, and uniform distributions). The analytical
equation of the probability density function of the GGD is given
by

pðx; c,r,tÞ ¼ t
2rGð1=tÞ

exp �
Jx�cJt

rt

� �
, ð2Þ

where c, r40 and t40 are the parameters of the mean, the scale
or width and the shape of the distribution, respectively. GðzÞ is the
Gamma function, an extension of the factorial function, which is
defined as GðzÞ ¼

R1
0 tz�1e�t dt, for z40. The scale parameter r

that expresses the width of the distribution is related to the
normal standard deviation by the equation:

r¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gð1=tÞ
Gð3=tÞ

s
, ð3Þ

where s is the normal standard deviation. The shape parameter t
refines the decay rate of the density function. It is worth noting
that t¼ 2 yields Gaussian density and t¼ 1 results in Laplacian
density distribution. As limit cases, for t-0, the distribution
becomes impulsive, whereas for t-1 it approaches uniform
distribution (Fig. 1). Then, the scale parameter models the width
of the GGD peak and the shape parameter is inversely propor-
tional to the decreasing rate of the peak.

The GGD model is intrinsically stable, since it is characterized
by few parameters to be estimated. Compared to Gaussian
distribution, thanks to an additional statistical parameter (i.e., the
shape parameter), it is more flexible and can approximate a large
class of statistical distributions.

In this paper, based on this probability distribution, we define
a novel RBF, by removing the constraints of a probability function,
called generalized radial basis function (GRBF) which is defined
using the following expression (for a k-dimensional input space):

fjðx; cj,rj,tjÞ ¼ exp �
Jx�cjJ

tj

r
tj

j

 !
, ð4Þ

where xi ¼ ðxi1, . . . ,xikÞ
T is the vector of measurements, k is the

number of inputs, rj the width of the GRBF, cj ¼ ðcj1, . . . ,cjkÞ
T the

center and tj the shape parameter of the j-th GRBF.

Fig. 1. Probability density function of the generalized Gaussian distribution (GGD)

with different values of t, c¼0 and r¼ 1.
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