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In this paper a new learning algorithm is proposed for the problem of simultaneous learning of a

function and its derivatives as an extension of the study of error minimized extreme learning machine

for single hidden layer feedforward neural networks. Our formulation leads to solving a system of linear

equations and its solution is obtained by Moore–Penrose generalized pseudo-inverse. In this approach

the number of hidden nodes is automatically determined by repeatedly adding new hidden nodes to

the network either one by one or group by group and updating the output weights incrementally in an

efficient manner until the network output error is less than the given expected learning accuracy. For

the verification of the efficiency of the proposed method a number of interesting examples are

considered and the results obtained with the proposed method are compared with that of other two

popular methods. It is observed that the proposed method is fast and produces similar or better

generalization performance on the test data.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

Prediction by regression is an important method of solution for
forecasting. In regression by analyzing the given input and their
corresponding output values an approximation function that
describes the underlying relationship between them is deter-
mined. For any unseen input example its output is predicted
using this relationship.

The problem of regression estimation for a set of input
examples given arises in a number of applications of practical
importance like drug discovery [3], time series prediction [14,20],
blind identification [18]. However in certain applications like
linear circuits [17], Kalman filtering [2] it is necessary to estimate
both the function and its derivatives. Recently Lazaro et al. [12]
proposed a support vector regression (SVR) based approach for
the simultaneous learning of a function and its derivatives that
leads to solving a quadratic minimization problem. In this
approach it is assumed that at each input example both the
function and its derivative values are given together and to obtain
the resulting optimal solution an iterative reweighted least
squares (IRWLS) procedure is applied. In [10], the problem of
simultaneous learning of a function and its derivatives is for-
mulated using a regularized least squares SVR. This formulation

allows the set of input examples at which the function values and
the set where the derivatives to be given independent of each
other. The main advantage of this formulation is that the solution
is obtained by inverting a single matrix of order equals to the sum
of the number of input examples at which the function and the
derivative values are given. Finally for the study of simultaneous
learning of a function and its derivatives using neural networks
and/or its applications see [1,11,13,15].

In [6], Huang et al. proposed a new non-iterative learning
algorithm for single hidden layer feedforward networks (SLFNs)
architecture called extreme learning machine (ELM) which over-
comes the problems caused by gradient decent based algorithms
such as back propagation. In this algorithm the input weights and
bias are randomly chosen. The ELM formulation leads to solving a
system of linear equations in terms of the unknown weights
connecting the hidden layer to the output layer and its solution is
obtained using Moore–Penrose generalized pseudo-inverse [16].
Although ELM is a simple and an efficient learning algorithm, the
number of hidden nodes of the SLFN is a parameter and its value
is to be given at the beginning of the algorithm. Recently an error
minimization based approach has been proposed in [4] to auto-
matically determine the number of hidden nodes of the SLFN. In
this approach the hidden nodes are allowed to grow one by one or
group by group and once new hidden nodes are added the output
weights are incrementally updated in an efficient manner. This
process of adding more number of hidden nodes and determining
its output weights is continued until the desired learning accu-
racy is achieved. Finally for the interesting work of an extension
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of ELM to support vector networks and the application of ELM for
time series the interested reader is referred to [9,19].

In this paper, we extend the study of error minimized ELM
(EM-ELM) [4] proposed for estimation of a function to the
problem of simultaneous learning of a function and its deriva-
tives. Though our method of solution is applicable to the problem
of simultaneous learning of a function and its derivatives of
higher order, for reason of simplicity, we consider only the
problem of simultaneous learning of a function and its first-order
derivatives. The main advantage of our approach is that our
formulation will lead to solving a rectangular system of linear
equations and its solution is obtained by Moore–Penrose general-
ized pseudo-inverse [16]. Finally to verify the effectiveness of our
method a number of examples are considered. It is observed that
the proposed method is fast and produces similar or better
generalization performance clearly demonstrates its practical use.

The rest of the paper is organized as follows: in Section 2 we
briefly discuss the ELM initially proposed by Huang et al. [6] for
SLFNs. For the problem of simultaneous learning of a function and
its derivatives, the approach proposed by Lazaro et al. [12] in
formulating the problem as an extended e-insensitive SVR pro-
blem and the regularized least squares approach of Jayadeva et al.
[10] are briefly discussed in Section 3. Motivated by their work
[10,12] we propose in Section 4 the extension of the study of
EM-ELM for the problem of simultaneous learning of a function
and its derivatives. Experimental results are reported in Section 5
and finally we conclude our paper in Section 6.

Throughout in this work all vectors are assumed as column
vectors. For any two vectors x, y in Rn the inner product of the
vectors is denoted by xty where xt is the transpose of the vector x.
The 2-norm of a vector x is denoted by JxJ.

2. Extreme learning machine method

Let {(xi,yi)}i¼1,2,y,p be a set of training examples given where
for the input example xi ¼ ðxi1,. . .,xinÞ

t ARn its corresponding
observed value of the function being yiAR. Then for the randomly
assigned values for the weight vector as ¼ ðas1,. . .,asnÞ

t ARn and the
bias bsAR connecting the input layer to the sth hidden node, the
standard SLFNs with ‘ number of hidden nodes approximate the
input examples with zero error if and only if there exists an
output vector w¼ ðw1,. . .,w‘Þ

t AR‘ in which ws is the weight
connecting the sth hidden node to the output node such that
the following condition:

yi ¼
X‘
s ¼ 1

wsGðas,bs,xiÞ for i¼ 1,:::,p

holds, where G(as, bs, xi) is the output of the sth hidden node for
the input xi. This set of equations can be written in matrix form as

Hw¼ y, ð1Þ

where

H¼

Gða1,b1,x1Þ . . . Gða‘ ,b‘ ,x1Þ

: . . . :

Gða1,b1,xpÞ . . . Gða‘ ,b‘ ,xpÞ

2
64

3
75

p�‘

ð2Þ

and

y¼ ðy1,. . .,ypÞ
t ARp: ð3Þ

For additive hidden node with activation function g: R-R, G(as, bs,
x) is given by

Gðas,bs,xÞ ¼ gðat
sxþbsÞ,

where as and bs are the weight vector and bias connecting the
input layer to the sth hidden node. Similarly for radial basis

function (RBF) hidden node with activation function g: R-R,
G(as,bs,x) is given by

Gðas,bs,xÞ ¼ gðbsJx�asJÞ,

where as and bs40 are the center and impact factor of the sth
RBF node.

For a given SLFN for which the activation function g( � ) in any
interval is infinitely differentiable and the p training examples are
distinct with the number of hidden nodes ‘ equals to p, for any
randomly chosen asARn and bsAR from any intervals of Rn and R,
respectively, according to any continuous probability distribution,
it has been shown in [6] that with probability one the hidden
layer output matrix H of the SLFN defined by (2) is invertible and
JHw�yJ¼0. However, in real applications ‘op is true and in this
case for the randomly assigned values of the parameters asARn

and bsAR, training the SLFN is equivalent to obtaining a least
squares solution w of the linear system (1). In fact, w is
determined to be the minimum norm least squares solution of
(1) which can be explicitly obtained by [6]

w¼Hyy,

where Hy is the Moore–Penrose generalized inverse [16] of the
matrix H. Also when rankðHÞ ¼ ‘, we can write

Hy ¼ ðHtHÞ�1Ht , ð4Þ

where Ht is the transpose of H. Finally by obtaining the solution
wAR‘ , the regression estimation function f( � ) for any input
example xARn is determined to be

f ðxÞ ¼
X‘
s ¼ 1

wsGðas,bs,xÞ: ð5Þ

Remark 1. Once the values of the weight vector asARn and the
bias bsAR are randomly assigned at the beginning of the learning
algorithm they remain fixed and therefore the matrix H is
unchanged.

Remark 2. Since the sigmoidal, radial basis, sine, cosine and
exponential functions are infinitely differentiable in any interval
of definition they can be chosen as activation functions.

Finally, it is important to note that, according to ELM theory,
ELM works for generalized feedforward networks which may not
be neuron alike [5,7,8].

3. The SVR approach of Lazaro et al. [12] and Jayadeva et al.
[10] with derivatives

3.1. Support vector regression with derivatives (SVRD)

In [12], Lazaro et al. proposed the regression approximation
problem for the simultaneous learning of a function and its
derivatives formulated as an extended e-insensitive loss function
based SVR problem. However in order to optimize the regression
estimation problem they employed an IRWLS procedure. They
studied initially the method for solving one-dimensional input
space problems and later extended their work to the general case.

In this subsection we briefly discuss the model of Lazaro et al.
[12] for one-dimensional input space problems and for the
general case of multidimensional input spaces the interested
reader is referred to [12].

Assume that a set of input examples {(xi,yi,yi
0)}i¼1,2,y,p is given

where xi denotes the ith input example for which the observed
values of the function and its derivative being yiAR and yi

0AR,
respectively. Consider the problem of finding the regression
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