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a b s t r a c t

The classification algorithm extreme SVM (ESVM) proposed recently has been proved to provide very

good generalization performance in relatively short time, however, it is inappropriate to deal with

large-scale data set due to the highly intensive computation. Thus we propose to implement an efficient

parallel ESVM (PESVM) based on the current and powerful parallel programming framework

MapReduce. Furthermore, we investigate that for some new coming training data, it is brutal for

ESVM to always retrain a new model on all training data (including old and new coming data). Along

this line, we develop an incremental learning algorithm for ESVM (IESVM), which can meet the

requirement of online learning to update the existing model. Following that we also provide the parallel

version of IESVM (PIESVM), which can solve both the large-scale problem and the online problem at the

same time. The experimental results show that the proposed parallel algorithms not only can tackle

large-scale data set, but also scale well in terms of the evaluation metrics of speedup, sizeup and

scaleup. It is also worth to mention that PESVM, IESVM and PIESVM are much more efficient than

ESVM, while the same solutions as ESVM are exactly obtained.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

Unlike those conventional iterative implementations, Huang
et al. [1,2] proposed a new learning algorithm called extreme
learning machine (ELM) for single-hidden layer feedforward neural
networks (SLFNs), which randomly chooses input weights and
hidden biases and analytically determines the output weights of
SLFNs. The learning process of ELM for an SLFN includes two steps.
First, the input vectors are mapped into the hidden layer output
vectors through the hidden layer of a SLFN, with its input weights
and hidden biases randomly generated. Second, a minimum norm
least squares solution of the output weights is obtained by comput-
ing the generalized inverse of the hidden layer output matrix [1,2].
Though it has been studied that ELM can provide good general-
ization performance at an extremely fast learning speed [1,2], ELM
still tends to be over-fitting at the second step according to the
empirical risk minimization (ERM) principle [33–35].

To overcome the over-fitting problem in ELM, according to
Vapnik’s structure risk minimization (SRM) principle [34,35], Liu
et al. [3] formulated a new nonlinear support vector machine (SVM),
called extreme support vector machine (ESVM).1 Later, Frénay and
Verleysen [4] also performed a similar work on standard SVM. In

ESVM, similar as the first step of ELM’s learning process, a nonlinear
map function is explicitly constructed by a random SLFN’s hidden
layer. Liu et al. [3] made a significant contribution. They show that
the ELM learning approach can be applied to SVMs directly by
simply replacing SVM kernels with random ELM kernels and better
generalization can be achieved [5,3]. The ESVM classifier can also be
regarded as a special form of regularization networks [6], which
classifies the data points similar as proximal SVM (PSVM) [7],
multisurface PSVM [8], and least squares SVM (LSSVM) [9]. As has
been shown in [3], ESVM can produce better generalization perfor-
mance than ELM almost all of the time and can run much faster than
other nonlinear SVM algorithms with comparable accuracy.

It is observed that ESVM must do the multiplications of several
matrices to obtain the solution, and the computation complexity
depends on the size of the training data set. This leads to the
inefficiency of ESVM when dealing with large-scale data. Further-
more, ESVM in its current form can not be used in online learning.
Actually, many real life machine learning problems can be more
naturally viewed as online rather than batch learning problems,
the data is often collected continuously in time.

With the fast development of cloud computing, many
researchers have proposed some parallel learning algorithms
[10–13], such as the parallel implementation of ELM [10]. And
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1 ESVM is essentially a linear PSVM [7] in the ELM feature space,

which corresponds to a ELM with output weights trained by ridge regression

(i.e. L2/Tikhonov-regularization on the output weights). So ESVM is not the same

as standard SVM with ELM kernel [4].

Neurocomputing 74 (2011) 2532–2540

www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2010.11.036
mailto:heq@ics.ict.ac.cn
mailto:530751551@qq.com
mailto:ducy@ics.ict.ac.cn
dx.doi.org/10.1016/j.neucom.2010.11.036


lots of efforts have been devoted to the development of online/
incremental learning2 in recent years [14–23].

However, now more and more data processing problems are
both large-scale and online, exploring effective and efficient algo-
rithms that can solve both the large-scale problem and the online
problem at the same time is of great significance. Although there
have been many parallel and online learning algorithms, but most of
them only focus on one problem, either large scale or online.

In this paper, we extend ESVM to an incremental learning
algorithm IESVM, and develop the parallel implementations of
ESVM and IESVM.

We note that Google has provided a PSVM: parallelizing support
vector machine, but it does not support incremental learning [11].
And though several incremental SVM algorithms have been proposed
[21–23], they are all serial algorithms and can not be parallelized
easily, while our proposed IESVM can be parallel executed very easily.

We implement our PESVM based on MapReduce, which is a
current and powerful parallel programming framework. The
experiments show that PESVM scales well in terms of the
evaluation metrics of speedup, sizeup and scaleup. By comparing
ESVM with PESVM, IESVM and PIESVM, we observe that PESVM,
IESVM and PIESVM can give exactly the same solutions as ESVM
while saving much training time, which is shown in our experi-
ments. The experiments also show that PIESVM has very fast
incremental learning speed, which can be used to solve large-
scale online learning problems efficiently.

The rest of the paper is organized as follows. We first give
some preliminary knowledge in Section 2. Then Section 3 pre-
sents our parallel ESVM algorithm based on MapReduce. Section 4
gives our incremental ESVM classifier and its parallel implemen-
tation PIESVM. Then experimental results are shown in Section 5.
Finally, we draw our conclusions in Section 6.

A word about our notations. All vectors will be column vectors
unless transposed by a superscript0. The scalar product of two
vectors x and y in n-dimensional space Rn will be denoted by x0y,
and the 2-norm of a vector x is denoted by JxJ. For a matrix
AARm�n, Ai is the ith row of A which is a row vector Rn, while A.j is
the jth column of A. A column vector of ones of arbitrary
dimension will be denoted by e. The identity matrix of arbitrary
dimension will be denoted by I.

2. Preliminary knowledge

2.1. Review of extreme SVM

To derive our parallel incremental ESVM classifier, we first give
a brief description of the ESVM formulation [3].

Consider the 2-class classification problem of classifying m

points in n-dimensional real space Rn, represented by the m�n

matrix A. A m�m diagonal matrix D with þ1 or �1 along its
diagonal specifies the membership of class Aþ or class A� of each
point Ai. For this problem, the extreme support vector machine
with a linear kernel, which has the same form as the linear PSVM
[7], is given by the following quadratic program with parameter
n40 and linear equality constraint (y is the slack variable):

min
ðw,r,yÞARnþ 1þm
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s:t: DðAw�erÞþy¼ e ð1Þ

which tries to find the proximal planes: x0w�r¼ 71, where w,r
are the orientation and the relative location to the origin

respectively. These two planes are proximal to the points in class
Aþ and class A� respectively, and the plane x0w�r¼ 0, which is
midway between the above two proximal planes, is chosen as the
separating plane which acts as below:

x0w�r

40, then xAAþ

o0, then xAA�

¼ 0, then xAAþ or xAA�
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The nonlinear ESVM classifier [3] is obtained by applying the
above linear formulation in a feature space, which is introduced
by a specially devised nonlinear mapping function. The mapping
function Fð�Þ : Rn-R ~n , which maps the input vectors into the
vectors in a feature space, can be constructed as follows:

FðxÞ ¼ GðWx1
Þ
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where xARn is the input vector, x1 ¼ ½x0 1�0, WAR ~n�ðnþ1Þ is a
matrix whose elements are randomly generated, FðxÞ is the vector
corresponding to x in the feature space, and the notation Gð�Þ

represents a map which takes a matrix Z with elements zij and
returns another matrix of the same size with elements gðzijÞ,
where g is an activation function (typically the sigmoidal func-
tion). Note that x, W can be interpreted as the input vector and the
input weights and hidden biases of an SLFN respectively, and FðxÞ
is the hidden layer’s output vector of x in ELM algorithm.

For the m�n matrix A, FðAÞ is defined as FðAÞ ¼ ½FðA01Þ, . . . ,
FðA0mÞ�

0.
Then, the nonlinear ESVM can be formulated as the following

quadratic program problem with a parameter n40:

min
ðw,r,yÞAR ~n þ 1þm
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s:t: DðFðAÞw�erÞþy¼ e ð4Þ

From the linear constraint of (4) we can get an explicit
expression of y. Substituting y by its explicit expression in the
objective function of (4), we can get the following unconstrained
minimization problem:

min
ðw,rÞAR ~n þ 1

n
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Setting the gradient with respect to w and r to zero and noting
that D2 ¼ I gives the following necessary and sufficient optimality
conditions for (5):

nFðAÞ0ðFðAÞw�er�DeÞþw¼ 0

ne0ð�FðAÞwþerþDeÞþr¼ 0 ð6Þ

By solving the linear system of Eqs. (6) we can obtain the
following simple expression for w and r in terms of problem data:

w

r

� �
¼

I

n
þE0FEF

� ��1

E0FDe ð7Þ

where EF ¼ ½FðAÞ �e�ARm�ð ~nþ1Þ.
Now for an unseen point x, the nonlinear classifier works as

follows:

FðxÞ0w�r

40, then xAAþ

o0, then xAA�

¼ 0, then xAAþ or xAA�
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Since linear ESVM has a very similar form as nonlinear ESVM,
the only difference between them is that nonlinear ESVM is
modeled in a feature space introduced by an explicit mapping

2 In this paper, we use the terms ‘‘incremental learning’’ and ‘‘online learning’’

interchangeably.
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