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Testing the correct model specification hypothesis for artificial neural network (ANN) models of the
conditional mean is not standard. The traditional Wald, Lagrange multiplier, and quasi-likelihood ratio
statistics weakly converge to functions of Gaussian processes, rather than to convenient chi-squared
distributions. Also, their large-sample null distributions are problem dependent, limiting applicability.
We overcome this challenge by applying functional regression methods of Cho et al. [8] to extreme
learning machines (ELM). The Wald ELM (WELM) test statistic proposed here is easy to compute and

has a large-sample standard chi-squared distribution under the null hypothesis of correct specification.
We provide associated theory for time-series data and affirm our theory with some Monte Carlo

experiments.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Artificial neural networks (ANNSs) are extensively used to appro-
ximate stochastic relationships of unknown form. Their appeal is
based on their universal approximation properties (see, e.g.,
[20,21,31,37]). Nevertheless, ANNs are often difficult to apply, as
they may require estimating a large number of unknown para-
meters (network weights). Consequently, ANNs may suffer from
overfitting, and their predictive power can be poor for this reason.

This limitation motivates the search for parsimonious ANN
models. For this, one can first train a small ANN network and then
train a larger network. One can then test whether or not the fit of
the larger network improves to a statistically significant degree.
If it does, one has evidence that the parsimonious model suffers
from misspecification, in the sense that the smaller model’s errors
contain approximation error as well as pure prediction error. If
not, one has evidence that the larger network is unnecessary, as
the smaller network’s errors are mostly pure prediction error.

There are many test statistics in the literature that can be
applied for this purpose; their variety is due to the fact that this is
a non-standard testing problem. Specifically, there are unidenti-
fied parameters under the null of correct model specification (see
[11,12]); this causes standard test statistics to behave in non-
standard ways. For example, the Wald test examined by Bierens
[4] and Hansen [18] for cross-section and time-series data,
respectively, does not follow a standard chi-squared distribution
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under the null of correct specification. Instead, it weakly con-
verges to a function of a Gaussian process, and its limiting null
distribution is problem dependent. As another example, the
quasi-likelihood ratio (QLR) test statistic designed to overcome
the twofold identification problem pointed out by Cho et al. [9]
also does not follow a standard distribution under the null. As
White [35] and Kuan and White [23] note, it can be a challenging
task to construct test statistics in such a way that they follow
standard distributions under the null and, at the same time, have
non-negligible power to detect misspecification.

The goal of the current study is motivated by this observation.
We seek a statistical test for the correct model specification
hypothesis, whose application is straightforward and that has a
standard asymptotic null distribution. This test can then be used
to help construct parsimonious ANN models.

We achieve our goal by combining the theory of functional
regression with that of extreme learning machines (ELM). Cho
et al. [8] study functional regression, in which functional data are
regressed against known deterministic functions. These authors
develop a statistic to test whether or not the population mean of
the functional data is a constant function. Conveniently, the
statistic follows a standard limiting chi-squared distribution
under the null. Nevertheless, the required integrations make
computing the test statistic quite demanding. This limits applic-
ability, except when the observed functional data have a fairly
simple structure. Here, we avoid this difficulty by applying
extreme learning machines (ELM) to generate functional data
for the test. Applying ELM methods proposed by Huang et al. [22]
and by White [42] (QuickNet) indeed enables our Wald ELM
(WELM) test to be computed very conveniently.

The plan of this paper is as follows. We first introduce and
heuristically motivate the WELM test in Sections 2 and 3. The
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WELM test is analyzed in Section 4 under a set of formal
regularity conditions. There, we examine large-sample properties
of the WELM statistic under the null and alternative hypotheses.
We report the results of some Monte Carlo experiments in Section
5; mathematical proofs are gathered into the Appendix.

2. The data generating process (DGP) and ANN models

We suppose the data to be analyzed are weakly dependent
time-series data:

Assumption A1l (DGP). Let (Q,F,[P) be a complete probability
space, and let keN. Let {(Y, X)) :Q->R'**:t=1,2,...) be a
strictly stationary and absolutely regular process with mixing
coefficients 8, such that for some p > 1, 3°2°_; 122/*~Df < 0.

Here, Y; and X; are serially dependent target and explanatory
variables, respectively. For convenience, we permit X; to include a
constant element. It may also include Y;_1,Y;_5, etc. The mixing
coefficients 5, measure the dependence of the stochastic process as

p.=supE| sup |PAIFS )—PA)|,
seN Ae Fg

s+T

where F! is the o-field (information set) generated by (Ys,X)),
...,(Ys,X}), and Assumption Al implies that f, is of the size
—2p/(p—1). That is, for some &>0, B,=O0(t=2//®*-D-%), The
dependence allowed here is less than that assumed in the previous
literature, such as Hansen [18,19], Cho and White [7,10], Cho et al.
[8,9]. On the other hand, this stronger condition enables us not
only to consistently estimate the asymptotic covariance matrix of
our estimator, despite the dependence, but also to ensure appli-
cability of the functional central limit (FCLT) theorem, both of
which are needed in deriving the asymptotic null distribution of
our test statistic.

We suppose that the researcher’s interest lies in estimating
E[Y:|X;], the mean-squared-error optimal predictor of Y; given X;
(Conditional quantile-based prediction may also be of interest, as in
[38]; here we focus only on the conditional mean.). Suppose further
that the researcher approximates E[Y;|X;] using a function ¢ as

E[Yt |Xf] ~ ¢(Xt,0*),

where 6, is a suitably chosen parameter vector. For example,
@d(X;,0,) could be the output of a hidden layer feedforward
network (e.g., as in [23]) with network weights 0,. We call ¢
the researcher’s “specification” for E[Y;|X;]. The question we
consider here is whether for some 6, the approximation is exact
(correct specification), so there is no possible way to improve the
prediction, or if the approximation using @ is not perfect (mis-
specification), implying that prediction improvements are possi-
ble. If the former is true, we can avoid suboptimal predictions
resulting from unnecessarily elaborating the prediction method. If
the latter, we can avoid suboptimal predictions resulting from an
overly simple prediction method.
To address this issue we impose the following assumption.

Assumption A2 (Model). Let @ cRY, deN, be a non-empty
compact convex set and suppose that for each e ®, @(.,0):
R*— R is a measurable function such that for each w e F e 7 with
P(F)=1, &Xi(w),") : O—R is twice continuously differentiable.
Let Ac R and A c R* be non-empty compact convex sets with
Oeint(A), and suppose that ¥:R—R is a non-polynomial
analytic function.

We can now formally state the null hypothesis of correct
specification of @ and the alternative of misspecification as

‘Ho : For some 0, € ®, P[E(Y:X;)=P(X:,0,)]=1

versus
Hy:Forall 0e ®, PE(Y:X;)=PX,0)]<1.

The augmented specification f(Xy; 0,4,0) = ®(X;,0)+ A¥P(X;0) is
the original specification, @, augmented by the contribution from
an additional hidden unit with activation function ¥, input-to-
hidden weights 9, and hidden-to-output weight 4. The augmented
specification generates the (augmented) model M as

M = {f(-;0,4,0) : (0,2,0) e ® x A x A}.

Thus, the null model Mg = {®(-,0) : 6 € O} obtains when 4 =0 and
is nested in M. When @ is correctly specified, E[Y;|X;] € Mo, that
is, Ho holds. Otherwise, #; holds. The advantage to specifying M
as we have is that, as Stinchcombe and White [31] show, if ¥ is
generically comprehensively revealing (GCR), then whenever H;
holds, the augmented specification f is guaranteed to provide a
better prediction than the original specification @, revealing the
presence of arbitrary misspecification of @. That is, we just need
to check whether adding a single suitably chosen (i.e., GCR)
hidden unit to the original specification can improve prediction
performance. By assuming that ¥ is non-polynomial analytic, we
ensure that it is GCR.

There are many admissible choices for ¥, and each has its own
merits. For example, White [35] considers the logistic cumulative
distribution function (CDF) for ¥; Bierens [4] examines the
correct model specification assumption by letting ¥ = exp; and
Candés [6] analyzes ridgelet functions. In addition, the familiar
trigonometric functions will also work.

Note also that @ is only mildly restricted. It can be any
feedforward network with any finite number of hidden units
and weights and any sufficiently smooth activation functions.
A particularly simple but important case is that of a linear input-
output network, &(X;,0)=X;0, as this form is widely used for
making predictions. White [35] and Lee et al. [24], among others,
explicitly test the linearity hypothesis using various analytic
functions Y.

The literature provides many testing procedures suited to our
present goal. For example, the goodness-of-fit test examined by
Delgado and Stute [13] can be used to test Hy. Nevertheless, to
maintain a tight focus in what follows, we limit attention to tests
utilizing the universal approximation feature of ANNSs.

First, Wald and Lagrange multiplier (LM) test statistics are
specifically examined by Bierens [4] and Hansen [18]. Their
approach mainly focuses on the coefficient 4. The null model
My is generated if A, is zero, where A, is the probability limit of
the nonlinear least-squares (NLS) estimator, say Jn Thus, a
diagnostic test for correct specification can be constructed using
the standard Wald or LM statistics, testing A, =0. But when
2+ =0, the associated optimal prediction parameter 4, is not
identified, where 4, is the probability limit of the NLS estimator,
say 8. The so-called Davies problem [11,12] of nuisance para-
meters identified only under the alternative hypothesis is present,
and the asymptotic null distributions of the test statistics are
different from the standard chi-squared distribution. Accordingly,
a great deal of effort has focused on determining these test
statistics’ asymptotic null distribution. In most cases, this is a
function of a Gaussian process defined on A, but the asymptotic
null distribution is different for each model M. This is also true of
Neyman’s [27-29] C(x) test.

Second, White [35] and Lee et al. [24] take a different
approach. They avoid the problem of nuisance parameters identi-
fied only under the alternative by randomly selecting input-to-
hidden weights d;, j=1,...,p, and estimating the hidden-to-out-
put weights by simple least-squares methods. This random selection
and estimation approach is exactly that known as extreme learning
machines (ELM) in the analysis of Huang et al. [22] and also
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