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a b s t r a c t

In this paper, a novel method based on extreme learning machine (ELM) and Copula function is

proposed to predict the damages to electricity transmission facilities during ice storms. The ELM is

firstly trained based on the historical data of wind speed, freezing precipitation, temperature, as well as

the distribution parameters of wind and ice loads. The ELM can then be employed to predict the

distributions of the real-time wind and ice loads on electricity transmission facilities. Furthermore, the

correlation between wind load and ice load is modeled with Copula functions. On the basis of ELM and

Copula function, the joint probability distribution of wind and ice loads can be finally formulated and

applied to predict the potential damages to electricity transmission facilities such as transmission lines

and towers. The proposed method is tested with a real dataset to demonstrate its effectiveness.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

As severe natural disasters, ice storms pose serious threats to
the security of the electricity transmission system. An ice storm
will cause large-scale ice accretion on transmission lines and
towers; the ice load on certain transmission lines can significantly
exceed the limit it can afford. The ice accretion and strong wind
also can together cause the collapses of transmission lines and
towers. The ice storm that attacked northeastern United States
and eastern Canada in January 1998 caused a severe blackout in
which the electricity supply of about 1.5 million households was
interrupted [1]. In January 2008, continuous ice storms struck
most parts of China and caused serious power outages. During the
ice storms, a total of 1196 km transmission lines were damaged
and 4017 transmission towers collapsed. The transmission sys-
tems in some areas lost their functions completely. Above facts
indicate that ice storms are serious threats to power system

security; therefore it is essential to study the ability of transmis-
sion facilities to withstand their impacts.

Concerning the ice storm damages to transmission facilities,
some studies have been conducted on meteorological analysis, ice
thickness prediction, transmission line loading and transmission
reliability assessment. In [2], the models of wind speed and
freezing precipitation are established based on the meteorological
analysis of ice storms. In [3], by analyzing historical ice thickness
data, an ice thickness forecasting method considering tempera-
ture, wind speed and freezing precipitation is proposed. In [4], the
Gumbel extreme value distributions of wind load and ice load on
transmission lines are derived. In above studies, the real-time
variations of meteorological factors are not taken into account,
which influences the accuracy of these methods. In [5–10], novel
universal approximation, incremental and online algorithms have
been developed based on the modifications of extreme learning
machine. In [11–13], ELM has been employed to solve real-world
problems such as mental tasks classification, terrain reconstruc-
tion and cancer diagnosis. The fast training speed and superior
performance of ELM have been demonstrated in these studies.

In [14], based on the wind speed, the wind load on the transmis-
sion tower with ice accretion, and correspondingly the reliability of
the tower are calculated. In [15], a model is proposed to calculate the
probability of transmission line damages caused by excessive wind
and ice loads. Till now, no existing research has carefully studied the
random and varying meteorological impacts of ice storms on both
transmission lines and towers. In practice, the ice loads and wind
loads on transmission facilities are not independent because they are
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both affected by similar meteorological factors. Therefore, the correla-
tion between ice loads and wind loads should be appropriately
modeled when we calculate the probabilities of ice storm damages.
This issue however has not been properly addressed in existing
researches.

In this paper, to overcome the two weaknesses of existing
methods, an ELM based predictor is formulated to predict the
probabilistic distributions of wind and ice loads. The ELM is trained
based on wind speed, freezing precipitation, temperature, as well as
the wind and ice load distribution parameters. Combined with the
Copula function and the ELM based predictor, the joint probability
distribution of wind and ice loads can be formulated to predict the
probability of ice storm damages to transmission lines and towers.
The proposed method can take into account both the real-time
meteorological information, and the correlation between wind and
ice loads. Comprehensive case studies based on a real dataset is
conducted to verify the effectiveness of the proposed method.

2. ELM based transmission facility loading prediction

During the ice storm, the wind load and ice load on transmis-
sion lines and towers are closely related with the meteorological
conditions. To accurately predict the wind and ice loads, it is
important to appropriately model the impacts of wind speed,
freezing precipitation and temperature. Because of its fast learn-
ing speed and good generalization ability, ELM is employed to
model the nonlinear functional relationship between meteorolo-
gical variables and the distributions of wind/ice loads.

Extreme learning machine [16–19] is a learning algorithm based
on the single hidden layer feed forward neural network (SLFN). ELM
not only has a much faster training speed than the back propaga-
tion (BP) algorithm and support vector machine (SVM), but also
avoids many difficulties faced by the BP algorithm such as stopping
criteria, learning epochs, local minima and the over-tuned pro-
blems. Also, ELM shows similar generalization performance to SVM
in many classification problems [20–23]. The topological structure
of an ELM network is shown in Fig. 1.

The proposed ELM network consists of three input nodes,
which, respectively, represent average wind speed v, lowest
temperature T and freezing precipitation p. The number of hidden
layer nodes is H, which can be determined based on the training
data. The output layer includes two nodes, which, respectively,
represent the mean m and standard deviation s of the wind/ice
loads distributions. The size of the training data is W.

The means and standard deviations of wind and ice loads
distributions can be calculated as follows:

(1) Based on the historical data of wind speed and freezing
precipitation, the ice loads on transmission lines and towers
can be calculated as [24]

Mt
Li ¼ rip½ðDþ2RtÞ
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where Mt
Li and Mt

Zi, respectively, represent the ice loads on the
transmission line and tower at time t, ri is the ice density, D

and L represent the diameter and length of the transmission
line respectively, ah is the altitude incremental factor, ad is the
ice thickness adjustment factor, g is the ice weight per unit
volume, lT is the sum of the lengths of all components and Rt

represents the ice thickness of both transmission lines and
towers at time t. Similarly, the wind loads can be calculated as
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where Mt
Lv and Mt

Zv represent the wind loads on transmission
line and tower at time t, vt represents the wind speed at time t,
W is the coefficient of wind load, S is the shape factor of the
transmission line, r represents the air density, Cd(a) represents
the drag coefficient corresponding to angle a of wind attack
and Af is the effective area of the structure.

(2) Based on the ice load data Mt�W1

Li ,. . .,Mt�1
Li ,Mt

Li calculated with
(1), we can estimate the normal distribution of ice load on the
transmission line at time t as FðMt

LiÞ �Nðmt
Li,ðs

t
LiÞ

2
Þ. W1 is the

sample size for ice load density estimation, and satisfies W1oW.
mt

Li and st
Li, respectively, represent the mean and standard

deviation of the ice load on the transmission line. The empirical
histogram and the theoretical probability density curve of the ice
load are given in Fig. 2. As seen in Fig. 2, the distribution of ice
load is approximately normally distributed.

Similarly, the distributions of ice load on the transmission
tower, as well as the wind loads on transmission lines and towers
can also be estimated as FðMt

LvÞ �Nðmt
Lv,ðst

LvÞ
2
Þ, FðMt
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Zi,
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The output of the ELM network can be illustrated as

Oj ¼
XH

i ¼ 1

bigðoiXjþbiÞ, j¼ 1,2,. . .,W ð3Þ

where Oj ¼ ½mj,s2
j �

T is the network output (dependent variables) of
jth training sample; Xj¼[vj,pj,Tj]

T is the input (independent vari-
ables) of the jth training sample; oi¼[oi1,oi2,oi3] represents the
weights of the connections between input nodes and the ith
hidden node; bi is the threshold of the ith hidden node;
bi¼[bi1,bi2]T is the weights of connections between the ith hidden
node and the output nodes; g(U) represents the activation func-
tion in the hidden layer. The training of the ELM network is an
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Fig. 1. The topological structure of an ELM network.
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Fig. 2. Empirical histogram and theoretical probability density of ice load.
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