
Cycle-breaking acceleration for support vector regression

Álvaro Barbero �, José R. Dorronsoro

Dpto. de Ingenierı́a Informática and Instituto de Ingenierı́a del Conocimiento, Universidad Autónoma de Madrid, 28049 Madrid, Spain

a r t i c l e i n f o

Available online 12 May 2011

Keywords:

Pattern recognition

Support vector machines

Support vector regression

a b s t r a c t

Support vector regression (SVR) is a powerful tool in modeling and prediction tasks with widespread

application in many areas. The most representative algorithms to train SVR models are Shevade et al.’s

Modification 2 and Lin’s WSS1 and WSS2 methods in the LIBSVM library. Both are variants of standard

SMO in which the updating pairs selected are those that most violate the Karush–Kuhn–Tucker

optimality conditions, to which LIBSVM adds a heuristic to improve the decrease in the objective

function. In this paper, and after presenting a simple derivation of the updating procedure based on a

greedy maximization of the gain in the objective function, we show how cycle-breaking techniques that

accelerate the convergence of support vector machines (SVM) in classification can also be applied under

this framework, resulting in significantly improved training times for SVR.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

For a given tolerance E, standard E-insensitive support vector
regression (SVR) [1,2] tries to adjust a linear model W � Xþb to a
sample fðXi,tiÞ : 1r irNg with Xi a vector of explanatory features
and ti the corresponding target value. More precisely, it solves

min
W ,b

1
2JWJ2

s:t: �ErW � Xiþb�tirE 8i

in other words, E-insensitive SVR tries to contain errors as jW �
Xiþb�tijrE while at the same time striving for a minimal JWJ.
However, it might well happen that no feasible solution can be
found and to make up for this, the previous restrictions are
relaxed introducing extra slack terms xi,x

�

i Z0 and the problem
becomes

min
W ,b,x,x�

1
2JWJ2

þC
X

i

ðxiþx
�

i Þ

s:t: �E�xirW � Xiþb�tirEþx�i 8i, ð1Þ

where C is a properly chosen penalty factor. This problem is
equivalent to minimizing

min
W ,b

X
i

½ti�W � Xi�b�EþlJWJ2,

where l¼ 1=2C and, for any real z, we define ½z�E ¼max½0,jzj�E�.
Thus, SVR can be seen as a modeling problem where errors are
measured in terms of the E-insensitive error function ½��E and a
regularization term lJWJ2 is added.

Standard convex optimization theory [3] shows that solving
(1) is equivalent to solving the following dual problem:

min
a,a�

1

2

X
i,j

ðai�a�i Þðaj�a�j ÞXi � Xj�
X

i

ðai�a�i ÞtiþE
X

i

ðaiþa�i Þ

s:t:
0rai, a�i rC, 1r irN,P

i

ai ¼
P

i

a�i ,

8<
:

where W can be obtained back from the solution of the dual as
W ¼

P
iðai�a�i ÞXi. In addition, the SVR dual problem can be easily

modified to produce nonlinear models by applying the so-called
‘‘kernel trick’’ [4], which, for an appropriate kernel function
kðxi,xjÞ, allows us to consider extended features Xi in a Hilbert
space as nonlinear projections Xi ¼FðxiÞ of the original features.
We then have Xi � Xj ¼FðxiÞ �FðxjÞ ¼ kðxi,xjÞ. By applying the kernel
trick in the dual SVR problem we obtain

min
a,a�

1
2ða�a

�Þ
T Kða�a�Þ�ða�a�Þ � tþEða � eþa� � eÞ

s:t:
0ra, a�rC,

a � e¼ a� � e,

(
ð2Þ

where K ¼ ðKij ¼ kðxi,xjÞÞ, zT denotes the transpose of vector z and e

stands for an all ones vector of length N. Representation (2) of the
SVR dual is similar to the corresponding one for the standard SVM
classification (SVC) dual. However, and as proposed by Lin, we
shall work in the more general setting of solving

min
a

f ðaÞ ¼ 1
2a

T Qaþa � p

s:t:
0rarC,

a � y¼ r

(
ð3Þ

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

0925-2312/$ - see front matter & 2011 Elsevier B.V. All rights reserved.

doi:10.1016/j.neucom.2011.03.024

� Corresponding author.

E-mail address: alvaro.barbero@uam.es (Á. Barbero).

Neurocomputing 74 (2011) 2649–2656

www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2011.03.024
mailto:alvaro.barbero@uam.es<!--AQ2-->
dx.doi.org/10.1016/j.neucom.2011.03.024

that contains as particular cases the SVC and SVR dual problems.
For instance, (2) is obtained when a¼ ða,a�Þ, Q ¼ ð K

�K
�K
K Þ,

p¼ ðEe�t,EeþtÞ, y¼[e,�e] and r¼ 0.
Among the standard algorithmic approaches to solve (2) are

Shevade et al.’s SMO-Modification 2 [5] and the methods con-
sidered in the LIBSVM library [6] of Lin and his coworkers. In both
a strategy similar to the sequential minimal optimization (SMO)
algorithm for support vector classification [7] is followed, attain-
ing the solution of (2) by iteratively solving a series of subpro-
blems involving a single pair of the ða,a�Þ coefficients. The method
for choosing at each iteration the updating pair, known as the
working set, is essential to guarantee the convergence of the
procedure, and both methods select the pair that most violates
the Karush–Kuhn–Tucker (KKT) optimality conditions, which
must hold at an optimum [8]. Furthermore in LIBSVM a ‘‘second
order’’ working set refinement, WSS2, is used to provide a larger
decrease in the objective function.

In this work, and after we propose a simple derivation of the
working set selection, based on obtaining an approximately
maximum gain for the objective function, our main contribution
will be to show how to apply a cycle-breaking (CB) acceleration
strategy, previously developed for support vector classification
[9], that results in significant savings in training times. The
paper is organized as follows. In Section 2 we shall briefly
review Modification 2 and the WSS1 and WSS2 approaches
followed in LIBSVM, and develop in Section 3 our alternative
working set selection derivation already given in [10] and
that can be ultimately traced to [11]. While not entirely new
(see [12] for similar ideas in SV classification procedure), it is
quite simple and we shall see that it essentially coincides with
SMO-Modification 2 and LIBSVM’s WSS1 or WSS2 algorithms
depending on the way the gain is approximated. In Section 4
we will show how to apply the cycle-breaking strategy in [9] to
problem (3) and our numerical experiments in Section 5 will
demonstrate how CB can noticeably improve for SVR the effi-
ciency of the WSS2 strategy. The paper will end with a short
discussion section.

2. Working set selection for support vector regression

In this section we will briefly review Modification 2 in [5] and
WSS1 and WSS2 in [6], the standard procedures for working set
selection in SVR. Regarding Modification 2 and WSS1, it is well
known that these methods produce the same working set, though
when applied to regression, Modification 2 solves a four-variable
problem while LIBSVM solves a 2-variable problem. Because of
this, WSS1 might be preferred for the sake of simplicity. Con-
versely, WSS2 produces different working sets, which generally
show better performance in practice.

2.1. SMO-Modification 2 for SVR

We shall give a simplified description of the approach followed
by Shevade et al. in their SMO-Modification 2 for SVR [5], which
we will simply refer as Modification 2. The selection of the
updating coefficients is based on a two-step procedure. In the
first one an analysis of the KKT conditions is used to reveal which
sample pair ðXup,XlowÞ presents the largest violation and, hence, is
more suitable for updating. In the second step we decide which
coefficient pair is to be updated out of the four possibilities
associated with the corresponding (aup,a�up,alow,a�low) coefficients.
This last step is performed by following the heuristics suggested
in [1].

More precisely, starting with the sample’s updating pair
selection, the following sets are considered:

I0a ¼ fi : 0oaioCg, I0b ¼ fi : 0oa�i oCg, I0 ¼ I0a [I0b,

I1 ¼ fi : ai ¼ 0,a�i ¼ 0g,

I2 ¼ fi : ai ¼ 0,a�i ¼ Cg, I3 ¼ fi : ai ¼ C,a�i ¼ 0g: ð4Þ

Writing Fi ¼ ti�W �FðXiÞ, we define next

~F i ¼
FiþE if iA I0b [I2,

Fi�E if iA I0a [I1,

(
F i ¼

Fi�E if iA I0a [I3,

FiþE if iA I0b [I1:

(

With this notation, a careful analysis of the KKT conditions for
SVR implies that if they hold at a given (W,b), the following
inequalities must also be true:

bZ ~F i 8iA I0 [I1 [I2, brF i 8iA I0 [I1 [I3:

Whether this holds can be very easily checked, for if we define

bup ¼minfF i : iA I0 [I1 [I3g, blow ¼maxf ~F i : iA I0 [I1 [I2g ð5Þ

we should have blowrbup if we are at an optimum. Conversely, if
blow4bup the optimum has not been reached yet. In this second
case, the indexes ilow,iup used to compute blow and bup define a
maximal KKT-violating pair and the so-called Modification 2 in
[5] suggests to use them as a first step in the updating procedure.
For convenience, we shall use the notations l, u instead of ilow,iup

in what follows.
Once these indexes have been chosen, we have to decide

which pair of the coefficients al,au,a�l ,a�u has to be updated. It can
be shown through the KKT conditions that at the optimum
aia�i ¼ 0 holds 8i. Consequently, in Modification 2 that condition
is enforced in every iteration. Hence, we have to decide among
the following four cases:

1 : update au,al; set a�u ¼ a
�
l ¼ 0;

2 : update au,a�l , set a�u ¼ al ¼ 0;

3 : update a�u,al, set au ¼ a�l ¼ 0;

4 : update a�u,a�l , set au ¼ al ¼ 0: ð6Þ

To select the best pair, the heuristic presented by Smola and
Schölkopf [1] is applied. The dual constraint e � a¼ e � a� is used to
write down explicitly the gains f ða0,ða�Þ0Þ�f ða,a�Þ that correspond
to each pair and the updates that lead to them. The corresponding
a0l or ða�l Þ

0 counterparts can be computed by observing that we
must have a0u�ða�Þ0uþa0l�ða

�Þ0l ¼ au�a�uþal�a�l .
Additionally we have to take care of the box constraints

0ra0i,ða
�Þ0irC, which may result in having to clip some of the

previous choices; details on how to proceed can be found in [1].
Once the clipped values have been computed, the update provid-
ing the maximum overall gain is selected. It must be noted that
the authors of [5] provide some heuristics that avoid the evalua-
tion of some cases, as they might not be feasible.

In our implementation of the method we maintain in memory
a vector with the current values of W � Xi 8i in order to speed up
the calculations. This vector can be updated efficiently at each
iteration as follows. Let us define the increments dl, d

�

l , du, d�u as
the amount of variation of the al, a�l , au, a�u coefficients as
determined by the previous rules. The new value of W 0 � Xi after
the update can then be written as

W 0 � Xi ¼
X

j

ðaj
0�a�0j ÞKji ¼

X
j

ðaj�a�j ÞKjiþðdl�d
�

l ÞKliþðdu�d
�

uÞKui

¼W �FðXiÞþðdl�d
�

l ÞKliþðdu�d
�

uÞKui:

Consequently, the update of the complete vector requires 2N

kernel operations (KOs). Note that once the W � Xi are calculated,
there is no need to compute further KOs during the iteration.

Á. Barbero, J.R. Dorronsoro / Neurocomputing 74 (2011) 2649–26562650

Download English Version:

https://daneshyari.com/en/article/410715

Download Persian Version:

https://daneshyari.com/article/410715

Daneshyari.com

https://daneshyari.com/en/article/410715
https://daneshyari.com/article/410715
https://daneshyari.com

