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Reinforcement learning of recurrent neural network for temporal coding
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Abstract

We study a reinforcement learning for temporal coding with neural network consisting of stochastic spiking neurons. In neural

networks, information can be coded by characteristics of the timing of each neuronal firing, including the order of firing or the relative

phase differences of firing. We derive the learning rule for this network and show that the network consisting of Hodgkin–Huxley

neurons with the dynamical synaptic kinetics can learn the appropriate timing of each neuronal firing. We also investigate the system size

dependence of learning efficiency.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Many studies have assumed that neurons transmit
information by their firing rate. The McCulloch–Pits unit
is a typical model and networks of these units have been
investigated. On the other hand, recent experiments suggest
that the timing of neuronal firing may also contribute to
the information representation function in the brain
and the synaptic modification [2,7,17,24]. For example, it
seems that local and global synchronization play a
significant role in integration of information which is
distributed across the brain. Another example shows that
the order of timing of neuronal firings can encode the
information of stimuli on fingertips, and this encoding by
sequence can transmit information faster than coding from
the firing rate directly [12].

To capture the dynamical aspects of neural networks,
networks consisting of various model neurons other
than the McCulloch–Pitts unit have been investigated,
because McCulloch–Pitts units cannot describe the tem-
poral behavior of neurons over short time scales. In this
context, an associative memory for neural networks of
oscillator neurons or spiking neurons has been studied

[1,8,11,13,15,16,28]. In these systems, the relative phase
differences, i.e., the timing of firings, are used to represent
the memory.
There are few studies of learning in pulse neuron models

such as those consisting of Hodgkin–Huxley (HH) neurons
because of difficulty in deriving the learning rule. Although
several studies have been made of learning in networks that
consist of integrate-and-fire (IF) model neurons [3,20,27],
most of these studies focus only on coding in terms of the
firing rate.
However, it would be useful to combine temporal coding

and learning because it has been shown that temporal
coding can deal with more information and process it faster
than coding from just the firing rate [23]. As an example of
this, Delorme et al. [4] show that a neural network
consisting of IF neurons can learn to identify human faces
by using ‘‘rank order coding’’, i.e., coding by the order of
timing of each neuronal firing, where neurons are allowed
to spike once only.
In this paper, we study a reinforcement learning for

temporal coding with neural network consisting of
stochastic spiking neurons. After defining a network of
coupled stochastic HH neurons and some quantities in
Section 2, we train the network to learn an XOR operation,
where the output information is coded by the order of
firing in Section 3. In Section 4, we investigate how the
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result or performance of learning depends on the system
size and the strength of noise, and conclusions follow.

2. The model

To illustrate an example of the learning process of
spiking neurons, we consider a neural network consisting
of HH neurons. Since HH neurons show excitability, they
can code information by the timing of firing. The complete
dynamics for a network of coupled HH neurons may be
expressed as

Cm
dV i

dt
¼ gNam3

i hiðVNa � ViÞ þ gKn4
i ðVK � V iÞ

þ gLðVL � ViÞ þ
X

j

wijI
s
j ðtÞ þ xiðtÞ, (1)

dmi

dt
¼ amðV iÞð1�miÞ � bmðViÞmi, (2)

dhi

dt
¼ ahðV iÞð1� hiÞ � bhðViÞhi, (3)

dni

dt
¼ anðV iÞð1� niÞ � bnðViÞni, (4)

where V i is the membrane potential of neuron i, Cm the
membrane capacitance, V r ðr ¼ Na;K;LÞ are the equili-
brium potentials, gr ðr ¼ Na;K;LÞ the conductance,
mi; hi; ni the voltage dependent activating or inactivating
variables, ax and bx ðx ¼ m; h; nÞ the functions of voltage
Vi [10], wij is the synaptic weight from neuron j to i

(wijawji in general), I sj ðtÞ the synaptic current and xiðtÞ is
the Gaussian white noise which obeys

xiðtÞ ¼ 0, (5)

xiðtÞxjðt
0Þ ¼ Qdijdðt� t0Þ, (6)

where A is the average of A over time and Q the variance of
noise. The synaptic current I sj ðtÞ is given by

I sj ðtÞ ¼ rjðtÞ½V syn � Vi�, (7)

where V syn is the synaptic reversal potential (here,
V syn ¼ 0:0mV) and rjðtÞ the fraction of bound receptors
[5] described by

drj

dt
¼ aTðtÞð1� rjÞ � brj, (8)

TðtÞ ¼
1; t0j ptot0j þ t;

0 otherwise;

(
(9)

where a ¼ 0:94m s�1, b ¼ 0:18m s�1, t0j the time when the
presynaptic neuron j fires (membrane potential over
27mV) and t ¼ 1:5ms [14]. Fig. 1 shows the behavior of
ViðtÞ and riðtÞ of single neuron added the external current
whose amplitude is 10mA. We used the fourth order
Runge–Kutta method with the time step Dt ¼ 0:01ms to
solve Eqs. (1)–(4).

To train the neural network, we use a reinforcement
learning algorithm. Let us consider time sequences of states
of neurons; s � ðVð0Þ;Vð1Þ;Vð2Þ; . . . ;VðTÞÞ, where VðtÞ
denotes the vector ðV 1ðtÞ; . . . ;V NðtÞÞ. We assign a scalar
value (‘‘reward’’) to each time sequence s according to the
signal from the network [22]. We give a high reward R to
the desirable time sequence s in each episode. Here we
consider episodic learning. Since Eq. (1) includes the
Gaussian white noise, we calculate the expected value of
the reward hRi, where h� � �i signifies the average over all
possible time sequences s. Then the goal of learning is to
maximize hRi by adjusting wij . We use an ascending
gradient strategy:

wNew
ij ¼ wOld

ij þ dwij, (10)

dwij ¼ �
qhRi
qwij

, (11)

where � is the learning coefficient. We can calculate the
gradient of hRi with respect to wij [6,9],

qhRi
qwij

¼
1

Q
RðsÞ

Z T

0

dtxiðtÞI
s
j ðtÞ

� �
. (12)

For details of the derivation, see appendix.

3. Learning procedure for temporal coding

The present learning rule Eqs. (10)–(12) can be effective
for any information coding including the order coding. To
show an example, we consider a neural network consisting
of two input neurons, 15 output neurons and hidden
neurons. We divide the set of output neurons into three
disjoint subsets, O1, O2 and O3, each containing five output
neurons.
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Fig. 1. The behavior of ViðtÞ and rjðtÞ of single HH neuron added the

external current. The neuron fires at t ¼ 2ms, then the value of riðtÞ starts

to increase. After a lapse of t ¼ 1:5ms, riðtÞ turns into decline.
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