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cCentro de Ciências Matemáticas—CCM, Universidade da Madeira, Campus Universitário da Penteada, 9000-390 Funchal, Madeira, Portugal

Available online 20 July 2007

Abstract

Several implementations of Feedforward Neural Networks have been reported in scientific papers. These implementations do not

allow the direct use of off-line trained networks. Usually, the problem is the lower precision (compared to the software used for training)

or modifications in the activation function. In the present work, a hardware solution called Artificial Neural Network Processor, using a

FPGA, fits the requirements for a direct implementation of Feedforward Neural Networks, because of the high precision and accurate

activation function that were obtained. The resulting hardware solution is tested with data from a real system to confirm that it can

correctly implement the models prepared off-line with MATLAB.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Artificial Neural Networks (ANN) became a common
solution for a wide variety of problems in many fields, such
as control and pattern recognition to name but a few.
Within these solutions, a large share was developed using
one type of ANN that only allows connections in the
forward sense (that is, between one layer and the next one
closer to the output), called Feedforward Neural Networks
(FNN). It is therefore not surprising that some of the
solutions have reached an implementation stage where
specific hardware is considered to be a better solution than
the most common implementation within a personal
computer (PC) or workstation.

A number of reasons can be pointed out as the
motivation for this:

� need for higher processing speed,
� reduced cost for each implementation,
� reliability.

The PC or the workstation being conventional von-
Neumann architectures are not able to provide the high
processing speed required by many applications. A hard-
ware solution can also be less expensive and more reliable
than a PC.
Also as pointed out by Ref. [7] ‘‘The greatest potential of

neural networks remains in the high-speed processing that
could be provided through massively parallel VLSI
implementations’’.
Within the possible solutions: analog, digital or hybrid,

as it is possible to find among the commercial implementa-
tions [5], the digital one has the following advantages:

� weight storage in memory,
� facility of integration with other applications,
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� facility to implement learning algorithms,
� exact within the number of bits of the operands and

accumulators,
� low sensitivity to electric noise and temperature.

Considering the possible solutions for a digital imple-
mentation, there are still choices to make: full custom
ASICs, Sea of Gates, FPGAs (to name only a few that have
already been used in ANN implementation). The real
choice is in fact quite reduced since for most of the
applications, a specific hardware solution must be designed
and therefore it is impossible to use the same design for
many applications, which makes it economically unaccep-
table to use ASICs or Sea of Gates solutions.

This leads, in the case of a specific application, to a
FPGA solution because the cost associated with only a few
copies of the hardware is acceptable. In the literature, it is
possible to verify that several solutions have already been
tested in the FPGA context [1–3,6,8,10,11].

Nevertheless, the solutions that were found do not allow
the direct use of the neural models that are prepared
frequently with software (like MATLAB or specific soft-
ware for ANN) within PCs or workstations.

All the solutions that the authors were able to verify
within FNN present either a much lower precision when
compared with these software solutions [1,6,8] or modifica-
tions in the activation function that make them unaccep-
table to use directly the weights previously prepared
[6,10,11].

Filling this gap between software and hardware solu-
tions, allowing the direct use of the weights is an important
step in the development of the ANN field.

In the present work, a hardware solution called Artificial
Neural Network Processor (ANNP), using a FPGA,
developed to fit the above requirements for a specific
application is presented.

Although the hardware was developed with a specific
application in view, the following characteristics can be
pointed out:

� Scalability, since the ANNP can be used for different
network sizes.
� High precision, since the inputs and internal calculations

are done with 32 bits in floating point notation.
� Accurate activation function, since the highest error

allowed in the implemented activation function is of
2.18� 10�5.

2. Hardware implementation

There are three main problems that must be addressed
when a hardware implementation with a FPGA is
considered:

� Notation
� Activation function
� Device capabilities.

Notation is a key issue in the hardware implementation.
It is almost consensual that floating point notation should
be used if a high precision is seeked with a lower number of
bits. The problem here is the complexity resulting from the
necessary operations (multiplication, division, addition)
with this notation.
The activation function is particularly difficult to

implement in the case of the sigmoid functions. The direct
implementation, for example, of the hyperbolic tangent
would require an adder, multiplier and exponential.
The problems pointed out can be solved if enough

hardware is available; this is why the device capabilities
limit the possible solutions.

2.1. Notation

The notation chosen was 32 bits floating point according
to the IEEE 754-1985 standard. Although it has been
stated in Ref. [12] that ‘‘A few attempts have been made to
implement ANNs in FPGA hardware with floating point
weights. However, no successful implementation has been
reported to date’’. and Nichols et al. [9] have concluded
that ‘‘floating point precision is still not feasible in FPGA
based ANNs’’, there were at least two applications
reported: Ref. [1] which used floating point notation of
17 bits and Ref. [2], which used 24 bits.
The fixed-point notation would require a larger number

of bits to obtain the same precision and maximum number
to be represented and for this reason this option was
discarded.
Other solutions include pulse stream arithmetic [8] or

bitstream [3].

2.2. Activation function

In the present application, the activation function used
was the hyperbolic tangent (Eq. (1)):

f ðxÞ ¼
ex � e�x

ex þ e�x
. (1)

This equation can be re-arranged so that it has only one
exponential but it still requires the operations of adding,
dividing and the calculation of the exponential itself.
Understanding that the direct implementation is not

suitable for the present solution, the hyperbolic tangent
was studied in order to simplify its implementation.
As the objective of the present work was defined from

the start, a maximum error could be set and a classical
approach with a Look-Up-Table (LUT) was tested, but it
was easily verified that this solution would be too expensive
in hardware.
A new approach was then tested: piece-wise linear

approximation. This corresponds to one of the classical
solutions for the implementation of the activation function
[12], but in this case with an important variation. While
most of these solutions are done using only three
linear sections to approximate the hyperbolic tangent, the
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