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Abstract

This paper introduces a novel genetic algorithm whose features have been purposely designed to be suited to hardware

implementation. This is distinct from previous hardware designs that have been realized directly from conventional genetic algorithm

approaches. To be suitable for hardware implementation, we propose that a genetic algorithm should attempt to both minimize final

layout dimensions and reduce execution time while remaining a valid implementation. Consequently, the new genetic algorithm

specifically aims to keep the requisite silicon area to a minimum by incorporating a monogenetic strategy that retains only the optimal

individual, resulting in a dramatic reduction in the memory requirement and obviating the need for crossover circuitry. The results given

in this paper demonstrate that new approach improves on a number of existing hardware genetic algorithm implementations in terms of

the quality of the solution produced, the calculation time and the hardware component requirements.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Hardware implementations of a range of genetic algo-
rithms (GAs) have been described by a number of authors
with the principal purpose of reducing execution time
[10,20]. Compared with their software counterparts, hard-
ware solutions typically reduce calculation times by a
factor of around 50 [2]. A further benefit of such solutions
is the possibility of replicating the GA, thus allowing
parallel exploration of the search space. Work in the
literature includes investigations of both coarse-grained
(distributed) hardware solutions [11,15], where the indivi-
dual processing elements (PEs) are loosely interconnected
and operate on distinct elements of the population, and
fine-grained (cellular) implementations [9,13], where the
PEs work collectively on the population. The latter is the
main target for the current work and we specifically aim to
apply modern electronic design automation (EDA) tools to
generate hardware solutions that provide extremely fine
division of the population between PEs. Although the
architectural nature of GAs appears inherently parallel, for
example, fitness calculations can be applied independently

to the individuals in separate threads of computation, the
application of the genetic operators frequently involves
combinations of chromosomes. Consequently, a close
mapping to fine-grained parallel solutions can be difficult
to realize in practice. Through an investigation of novel
GA architectures, the work presented in this paper is able
to deliver an innovative approach to maximizing the
independence between individuals; namely by completely
removing the need to maintain a population.
Where the GA implementation includes a population,

then, to achieve the most significant reduction in execution
time, the population is best stored in on-chip memory. In
such a case it is normally feasible to access the individual
chromosomes at the full clock speed, but such data occupy
significant physical area that could otherwise have been
used for other GAs, processing elements, control devices or
peripherals on the hardware system. With populations of
over 100 individuals in realistic applications [7], storage of
around 10–100 kB would be required. Modern field-
programmable gate arrays or application-specific inte-
grated circuits would have no practical difficulty in
assimilating such memory requirements, but, as many
modern implementations are system-on-chip (SoC)
solutions that incorporate multi-functionality and many
are deployed in portable embedded applications, it is
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important to avoid unnecessary use of silicon area that will
not only consume power, but also could have been used by
other functional components. Should such on-chip mem-
ory dominate the final layout, an alternative is to provide
off-chip memory. In such cases, not only may cost
considerations dictate the use of slower memory requiring
a number of clock cycles to access, but also, if a number of
GAs are combined in a single device, it is unlikely that the
data bandwidth will be sufficient to allow all GAs
simultaneous access to their respective populations. To
address the memory usage issue, the compact GA [1]
represented the population as a probability distribution
over the set of solutions rather than requiring the storage
of the entire population. The elements of a probability
vector, equal in length to that of the individuals in the
population, indicate the probability that the corresponding
bit of an individual is unity. All vector elements are initially
set to a value of 0.5. Each generation involves producing
new pairs of individuals whose bit pattern is determined
according to the vector probabilities. The probabilities in
the vector are then modified in favor of the bit values
stored in the individual of better fitness. The vector itself
holds the final solution. Ramamurthy and Vasanth [10]
implemented a conventional roulette-based GA in hard-
ware. The roulette wheel was used to select pairs of
individuals to be operated upon by single-point crossover,
where the number of slots allotted to an individual depends
on rank determined according to its fitness. Consequently,
the implementation of the algorithm requires that the
population is sorted in order of fitness before selection for
crossover. Mutation is implemented by inverting randomly
selected bits from an individual. In the implementation of
Hereboy, Levi [12] combined features of simulated anneal-
ing (in that only one individual is required) and GAs (to
mutate that individual). Combined with a novel method for
the adaptation of the mutation rate, the approach was
found to be particularly suitable for the solution of
problems requiring representation by long chromosomes.
As Levi considered the method particularly suited to serial
rather than the parallel hardware implementations, we
have chosen not to consider Hereboy as one of our alter-
native GAs in this paper; yet it is conceivable that minor
modifications to the algorithm would allow it to become a
suitable candidate solution for future investigation.

While addressing the performance and memory usage
issues, it is important to ensure that any hardware
implementation does not sacrifice the quality of the
resulting solution. Indeed, the mere process of designing
a hardware solution can almost inadvertently facilitate the
development of new methods that either would not have
come to light or would have been unrealistic in purely
software approaches. As an example, Sharawi et al. [21]
developed a crossover mechanism based on a ‘half-siblings-
and-a-clone’ approach that was able to shorten signifi-
cantly the GA convergence time. In the approach,
chromosomes that best meet the fitness criteria are kept
in a subsequent generation, while others are replaced by

individuals that surpass a threshold generated following
crossover. The crossover rate is lowered as more indivi-
duals satisfy the threshold, whose value is effectively the
mutation rate.
Software implementations generally allow significant

flexibility, not only in the modification of fitness calcula-
tions to meet the application requirement, but also in
terms of the ease with which parameters, such as the
population size, the lengths of individuals and the rate
of application of operators, can be varied. These often
need to be set once initially or varied during the search,
for example, according to the perceived or estimated size
of the solution space, the current progress of the
evolution or the required diversity in the population. To
permit their use in a wide range of applications, hardware
implementations of GAs also need to be flexible in their
structure to allow for such parameter variations [24].
Ideally, a facility to allow parameters to be set should be
available prior to each application of the GA, but in
practice, as a minimum requirement, it should be possible
to specify such parameters at the design stage before it is
progressed through the EDA flow. The more major the
effects of these parameter changes, the longer the time it
will generally take to generate a new hardware solution. As
memory blocks typically occupy substantial silicon area,
their reconfiguration often involves substantial redesign
effort. Consequently, most hardware solutions do not
tailor the memory requirement to the application, but
assume a worst-case usage, thereby wasting significant
silicon area and consuming additional power in many
applications.
This paper introduces the optimal individual monoge-

netic algorithm (OIMGA). It is specifically designed to
address the issues discussed above and achieves the
following:

� Compared with conventional GAs, the memory require-
ment is substantially reduced since only two individuals
need to be kept in on-chip registers.
� The memory requirement of OIMGA is largely inde-

pendent of the application.
� The solution has the potential for dynamic reconfigura-

tion according to the problem at hand.
� In comparison with a range of existing GA hardware

methods, its performance on benchmark problems is
shown to exhibit an improvement; in some cases a
significant one.

The paper is organized as follows. The OIMGA algorithm
is introduced in Section 2 and its hardware implementation
is described in Section 3. Section 4 presents results that
compare, for four hardware GA implementations, the
qualities of the solution produced, the calculation times
and the hardware component requirements. Conclusions
that discuss the benefits of OIMGA and the planned future
developments can be found in Section 5.
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