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Abstract

The paper analyzes the boundedness of the coefficients involved in Gaussian expansion series. These series arise from the

reconstruction of bandlimited functions, applying the sampling theorem with Gaussians as reconstruction filters. The boundedness of

the ideal coefficients is a previous requirement that should be imposed to the approximation function. This is due to the fact that the

coefficient sequence should be absolutely summable. With this sort of requirements, the targeted function is guaranteed to exhibit finite

energy so that it will be manageable from the viewpoint of the approximation theory. On the other hand, the bounds of the coefficients

affect considerably to the approximation errors and consequently to the accuracy of the estimation. The major result of this work is

formalized in a series of propositions where it is stated how the coefficients are upper bounded by a signal ‘‘sinus cardinalis’’ (sinc).

Finally, an energy measure of the approximation error is determined as a mean square error. In this line, a number of results are

presented in both the univariate and the multivariate case showing how these errors strongly depend on the coefficients in the Gaussian

expansion.
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1. Introduction

During the past two centuries many advances in
mathematical analysis have led to discover a number of
important classes of approximating functions ranging from
the classical Lagrange polynomial, trigonometric series and
orthogonal functions to modern techniques such as radial
basis functions (RBFs), multilayer feedforward neural
networks (MFNNs), splines and fuzzy systems. All these
approaches, under certain conditions, share the property of
exhibiting function approximation abilities and have their
own characteristic theory and history. A method can be
considered preferable as compared to others for a given
approximation problem and under some circumstances.
However, each method has its pros and cons, so that it
should not be asserted that an approach is the panacea in
the sense of being absolutely the best. The following

features of neural networks make them particularly
attractive and promising for applications to modelling
and control of nonlinear systems: (i) universal approxima-
tion abilities, (ii) parallel distributed processing abilities,
(iii) learning and adaptation and (iv) natural fault tolerance
and feasibility for hardware implementation [10,21]. The
success of neural networks [3,4] is due to their learning
ability and universal approximating power. The choice of
the networks depends on the conditions and prior knowl-
edge for the studied systems. If dimensionality of the input
vector is not very high and the ranges of network input
signals can be determined/guaranteed a priori, RBF
networks shall be used to simplify the design and analysis.
Due to their functional approximation capabilities, RBF
networks have been seen as a good solution to interpola-
tion problems. RBF networks are constructed from a set of
nonlinear functions that are assembled into one function
that can partition the search space successfully. The RBF
networks have some useful properties which render them
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suitable for modelling and control. First, they belong to a
class of linearly parametrized networks where the network
output is connected to the tunable weights in a linear
manner. The RBF uses hyper-ellipsoids to partition the
pattern space. This is different from MLP networks which
build its classifications from hyper-planes, defined by a
weighted sum. The RBF network also requires less
computation time for learning [16] and has a more compact
topology [13]. Furthermore, on-line learning rules can be
used to update the weights and the convergence results can
be derived. The data are guaranteed to be fitted exactly if
there is a basis function for each input. However, if the
input data are noisy, then the noise will be learned, causing
problems with generalization. Reducing the number of
basis functions until an acceptable fit is achieved can
reduce this problem.

Apart from pattern recognition, RBF networks have
been used for a wide range of applications such as time
series prediction [18], speech recognition [17] and adaptive
control [19]. The use of function approximators within
adaptive control designs has been popular since the
publication of the papers [22]. The idea is to use standard
adaptive designs for problems which depend on nonpar-
ameterized uncertainties, by utilizing function approxima-
tors to induce an appropriate approximate parameterization
of unknown system functions. Recently, increasing attention
has been paid to the use of artificial neural networks in
nonlinear control [5,11]. In [9,19], RBFs were used for the
adaptive control of SISO systems. Because RBFs are
linearly parametrized, convergence results can be rigorously
established.

The RBF network’s advantage is that once the basis
functions have all been chosen, the designer only needs to
choose the coefficients for each. The coefficients are added
in a linear manner and thus the solution is guaranteed since
there are no local minima to avoid. In this paper, it is
assumed that the only information available concerning the
target function is the smoothness specified by the
bandwidth, and an upper bound on the magnitude of its
spectrum. No other prior information about the exact
values of this function or its spectrum are known. As a
result, the actual coefficient cannot be specified ‘‘a priori’’.
Although it is difficult to determine the exact value of the
coefficients, it is possible to obtain an upper bound for
them. This paper focuses on the boundedness aspects of the
coefficients appearing in Gaussian expansion series, leading
to a wider and deeper understanding of their influences,
such as those on the energy attached to the Gaussian
approximation error. The main purpose is to consider the
coefficients from the general point of view and to elucidate
their role in applied design by using an efficient approach
based on introducing the multivariate sampling theorem.

At this point, a number of questions should arise
spontaneously: Why to make so efforts to derive bounds
on the ideal coefficients? Which are the implications of
these bounds on the design with neural networks? These or
similar questions immediately pop into the mind the first

time one comes across the term ‘‘boundedness’’. This paper
aims to provide a coherent approach to the extensive
ramifications originating from these, at first glance simple
starting points. To this purpose it is worth emphasizing the
dependence of the functional reconstruction error eðxÞ
(sometimes called as the NN function approximation error)
on the nominal coefficients of the network, besides the
number of nodes required in the expansion series. Whilst
the ‘‘complexity’’ and the ‘‘rates of approximation’’ have
been widely studied, little care has been carried out on the
derivation of explicit bounds on the nominal coefficients
providing an ideal approximation. Literature in the field of
neural networks reflects this situation, it emphasizes other
properties in characterizing approximations. Indeed, one of
the first assumptions when designing networks is the
boundedness of the approximation error by a function
depending on the number of network nodes. In a sense, it is
public knowledge that the error decreases as the network
size increases. Some results have been developed in this line
and reveals how large the number of nodes should be for a
specified approximation accuracy. However, the knowl-
edge of bounds on the nominal coefficients is crucial in
many practical applications, including those of modelling
and control. As for the structured network modelling, in
control engineering, networks are usually used to generate
input/output maps using the so-called ‘‘universal approx-
imation’’ property. Highlights in this field cover the
complete design cycle, while providing detailed insight into
most critical design issues such as tuning of network
parameters to attain a prescribed degree of accuracy. As
mentioned above, the accuracy achieved by an approxima-
tion scheme strongly depends on the ideal coefficients of
the network. From this, it is clear that deriving bounds
on the coefficients means also to get appropriate bounds on
the approximation error. By restricting our attention on
the adaptive control based on neural networks, in the
literature special attention has been given to estimation, in
particular learning procedures. Until recently, designers
have mostly focused on how to achieve the desired
performance requirements, and the design pays limited
attention to the precise adjustment of controller gains. All
the adaptive control schemes rely on the assumption that
the ideal weights are unknown and may even be
nonunique. Moreover, it is assumed that the weights are
bounded, with the bound known, on a compact set. When
control engineers design stable controllers based on neural
networks, it is useful not only to track a reference
trajectory, but also to ensure that all signals in the system
are bounded. In this, the weight deviations or weight
estimation errors deserve careful attention since candidate
Lyapunov functions are commonly formulated in terms of
them. In practical applications there are often unknown
disturbances or modelling errors, so that even the stability
in the sense of Lyapunov (SISL) is too strong to expect in
closed-loop systems [15]. In all those cases, the best to be
aspired after the asymptotic stability (AS) and the SISL is
the uniform ultimate boundedness. This is a more practical
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